A Learning Guide to \mathbf{R}

Beginner to intermediate skills in data analysis, visualization, and manipulation

Remko Duursma, Jeff Powell \& Glenn Stone

WESTERN SYDNEY

UNIVERSITY
W

Hawkesbury Institute
for the Environment

Prologue

This book is not a complete introduction to statistical theory. It should also not be the first statistics book you read. Instead, this book shows you how to implement many useful data analysis routines in R. Sometimes we explain a bit of theory behind the method, but this is an exception. We really assume that you have already learned statistics elsewhere and are here to learn how to actually do the analyses.
We have learned from experience that data practictioners, that means scientists and everyone else who has an interest in learning from data, do not learn statistical analyses by studying the underlying theory. They learn from doing, and from using examples written by others who have learned by doing. For this reason the book in front of you is largely a compendium of examples. We have chosen the examples and the exercises in the hope that they resemble real-world problems.

We have designed this book so it can be used for self-study. The exercises at the end of each chapter aim to test important skills learned in the chapter. Before you start on the exercises, read through the text, try to run the examples, and play around with the code making small modifications. We have also placed many Try it yourself boxes throughout the text to give you some ideas on what to try, but try to be creative and modify the examples to see what happens.
You can download the example datasets used in this book (see Appendix A), as well as the solutions to the exercises at bit.ly/RDataCourse.
An index with the functions and packages used is provided at the end of this book.

What is data analysis?

Most scientists would answer that this is the part of the work where the p-values are calculated, perhaps alongside a host of other metrics and tables. We take the view that data analysis includes every step from raw data to the outputs, where outputs include figures, tables and statistics. This view is summarized in the figure on the next page.

Because every step from raw data to output affects the outcome, every step should be well documented, and reproducible. By 'reproducible', we mean it should be possible for some other person (even if this is the future you) to re-run the analysis and get the same results. We agree with many others that \mathbf{R} is particularly good for reproducible research of this kind ${ }^{1}$, because it has utilities for all steps of data analysis.
We stress that it is absolutely vital to a successful data analysis to visualize at every step of the analysis ${ }^{2}$. When analyzing data, you should apply a continuous loop of statistical inference and visualizing the data (Find a significant effect you did not expect? Visualize it!; Visually find something interesting? Analyze it!).

Assumed skills of the reader

This book is written for scientists and data analysts who do not have a background in computer science, mathematics, or statistics. The astute \mathbf{R} programmer might notice that some terminology has been simplified, for reasons of clarity. Experience with programming in any language is therefore not required. We do assume that the reader has completed at least an Introduction to Statistics course, as this book does not explain the fundamentals of statistical analysis.

[^0]

Figure 1: A broader view of data analysis. The view we take in this book is that all operations on the data should be viewed as part of data analysis. Usually, only the statistical analysis is viewed as the analysis, but in many applications there are numerous steps from the initial raw data (produced from some data source, perhaps an experiment or an observational study) leading to the eventual figures and statistics. One of these steps is the combining of several raw data files into a processed dataset, which may also include data cleaning, calculation of new variables, renaming of columns, reshaping, and so on. Derived datasets are common as well, and these include summary variables (e.g. averages by treatment, totals over some time period). The process of visualizing the data via figures, and testing for significant effects and other statistical procedures is a two-way street: figures inform the statistics to be applied and vice versa (uncovering statistical significance on some effect mandates visualizing the effect). We stress to all data practitioners that all steps of data analysis are implemented in such a way to be fully reproducable, and documented in its entirety.

If you have used \mathbf{R} before, you will very likely still learn many new skills, and perhaps understand the more basic skills a little better.

Abstract

About the Authors

Remko Duursma was an Associate Professor at the Hawkesbury Institute for the Environment, Western Sydney University, and is now searching for a new direction as an independent data scientist. His research at HIE focused on understanding vegetation function and structure in response to the environment, using models and data. In his research, he routinely analyses large datasets arising from sensor networks, climate change experiments, literature syntheses, and other sources. He has been using R since 2001.

Jeff Powell is an Associate Professor based at the Hawkesbury Institute for the Environment at Western Sydney University. His research interests centre on understanding community assembly processes, particularly in the context of soil ecology and plant-microbe interactions, and relating these to ecosystem function. He utilises a variety of approaches to ecological informatics approach in his research, developing new tools and extending existing tools to test ecological hypotheses with large datasets from surveys of ecological communities, ecosystem properties, and species and environmental attributes. He has been using R since 2005. Glenn Stone is a statistician and data scientist currently working in the private sector. Previously he has been a Professor of Data Science in the Centre for Research in Mathematics at Western Sydney University and, before that, a Principal Research Analyst with Insurance Australia Group and a Senior Research Statistician with the CSIRO. His research interests are in computational statistics and data science, as applied to a wide variety of scientific and commercial applications. He has been using R since 2003.

Acknowledgments

This book accompanies the five-day course 'Data analysis and visualization with R', taught twice a year at the Hawkesbury Institute for the Environment (www.westernsydney.edu.au/hie). The PDF of this book is available at www.westernsydney.edu.au/rmanual. The class website can be reached at bit.ly/ RDataCourse.

We have used knitr (with Sweave and $\mathrm{LT}_{\mathrm{E}} \mathrm{X}$) (see http://yihui.name/knitr/) to produce this book, from within Rstudio (www.rstudio. com). We also use numerous add-on packages. Thanks to the developers for making these tools freely available.
Thanks also to those who have contributed original datasets that are used throughout this book (see Appendix A).
August 29, 2019

Contents

1 Basics of \mathbf{R} 5
1.1 Installing R and so on 5
1.1.1 R installation 5
1.1.2 Using and installing RStudio 5
1.2 Basic operations 6
1.2.1 R is a calculator 6
1.3 Working with scripts and markdown files 7
1.3.1 R scripts 7
1.3.2 Using scripts to program with objects 8
1.3.3 Working with markdown files 9
1.3.4 R code in markdown 11
1.3.5 Body text in markdown 12
1.3.6 Putting it together: notebooks in markdown 13
1.4 Working with vectors 13
1.5 Working with matrices 17
1.6 Generating data 18
1.6.1 Sequences of numbers 18
1.6.2 Random numbers 19
1.7 Objects in the workspace 20
1.8 Files in the working directory 20
1.9 Keep a clean memory 21
1.10 Packages 22
1.10.1 Using packages in markdown files 22
1.11 Updating R and packages 23
1.12 Accessing the help files 24
1.13 Save a session in RData format 24
1.14 Functions used in this chapter 26
1.15 Exercises 30
1.15.1 Calculating 30
1.15.2 Simple objects 30
1.15.3 Working with a single vector 31
1.15.4 Scripts 31
1.15.5 To quote or not to quote 31
1.15.6 Working with two vectors 32
1.15.7 Alphabet aerobics 1 32
1.15.8 Comparing and combining vectors 33
1.15.9 Into the matrix 33
1.15.10 Packages 33
1.15.11 Save your work 34
2 Reading and subsetting data 35
2.1 Reading data 35
2.1.1 Reading CSV files 35
2.1.2 Reading other data 36
2.2 Working with dataframes 38
2.2.1 Variables in the dataframe 38
2.2.2 Changing column names in dataframes 40
2.3 Extracting data from vectors and dataframes 40
2.3.1 Vectors 40
2.3.2 Subsetting dataframes 43
2.3.3 Difference between [] and subset() 47
2.3.4 Deleting columns from a dataframe 47
2.4 Exporting data 48
2.5 Functions used in this chapter 49
2.6 Exercises 52
2.6.1 Working with a single vector 2 52
2.6.2 Alphabet aerobics 2 52
2.6.3 Basic operations with the Cereal data 52
2.6.4 A short dataset 53
2.6.5 Titanic 53
2.6.6 Managing your workspace 53
3 Special data types 55
3.1 Types of data 55
3.2 Working with factors 55
3.2.1 Changing the levels of a factor 58
3.3 Working with logical data 58
3.4 Working with missing values 59
3.4.1 Basics 59
3.4.2 Missing values in dataframes 61
3.4.3 Subsetting when there are missing values 62
3.5 Working with text 62
3.5.1 Basics 62
3.5.2 Column names 63
3.5.3 Text in dataframes and grep 64
3.6 Working with dates and times 67
3.6.1 Reading dates 67
3.6.2 Date-Time combinations 69
3.7 Converting between data types 72
3.8 Functions used in this chapter 75
3.9 Exercises 82
3.9.1 Titanic 82
3.9.2 Hydro dam 82
3.9.3 HFE tree measurements 83
3.9.4 Flux data 83
3.9.5 Alphabet Aerobics 3 83
3.9.6 DNA Aerobics 84
4 Visualizing data 85
4.1 The R graphics system 85
4.2 Plotting in RStudio 85
4.3 Choosing a plot type 85
4.3.1 Using the plot function 86
4.3.2 Bar plots 86
4.3.3 Histograms and curves 88
4.3.4 Pie charts 89
4.3.5 Box plots 91
4.4 Fine-tuning the formatting of plots 93
4.4.1 A quick example 93
4.4.2 Customizing and choosing colours 94
4.4.3 Customizing symbols and lines 98
4.4.4 Formatting units, equations and special symbols 102
4.4.5 Resetting the graphical parameters 103
4.4.6 Changing the font 103
4.4.7 Adding to a current plot 104
4.4.8 Changing the layout 105
4.4.9 Finding out about more options 107
4.5 Formatting examples 108
4.5.1 Vessel data 108
4.5.2 Weather data 109
4.6 Special plots 110
4.6.1 Scatter plot with varying symbol sizes 112
4.6.2 Bar plots of means with confidence intervals 112
4.6.3 Log-log axes 113
4.6.4 Trellis graphics 114
4.7 Exporting figures 118
4.7.1 Sharing figures 118
4.7.2 Plots with many points or lines 118
4.8 Functions used in this chapter 120
4.9 Exercises 124
4.9.1 Scatter plot with the pupae data 124
4.9.2 Flux data 124
4.9.3 Hydro dam 125
4.9.4 Coloured scatter plot 125
4.9.5 Superimposed histograms 125
4.9.6 Trellis graphics 125
5 Basic statistics 126
5.1 Probability Distributions 126
5.2 Descriptive Statistics 127
5.3 Inference for a single population 130
5.4 Inference for two populations 133
5.4.1 Power 135
5.5 Simple linear regression 137
5.5.1 Diagnostic plots 138
5.6 Functions used in this chapter 143
5.7 Exercises 145
5.7.1 Probabilities 145
5.7.2 Univariate distributions 145
5.7.3 More t-tests 145
5.7.4 Simple linear regression 146
5.7.5 Quantile Quest 146
6 Summarizing, tabulating and merging data 148
6.1 Summarizing dataframes 148
6.2 Making summary tables 150
6.2.1 Summarizing vectors with tapply() 150
6.2.2 Summarizing dataframes with summaryBy 152
6.2.3 Tables of counts 155
6.2.4 Adding simple summary variables to dataframes 157
6.2.5 Reordering factor levels based on a summary variable 157
6.3 Combining dataframes 160
6.3.1 Merging dataframes 160
6.3.2 Row-binding dataframes 164
6.4 Exporting summary tables 166
6.4.1 Inserting tables into documents using R markdown 166
6.5 Exercises 170
6.5.1 Summarizing the cereal data 170
6.5.2 Words and the weather 170
6.5.3 Merge new data onto the pupae data 170
6.5.4 Merging multiple datasets 171
6.5.5 Ordered boxplot 171
6.5.6 Variances in the I xF 171
6.5.7 Weight loss 171
7 Linear modelling 173
7.1 One-way ANOVA 173
7.1.1 Multiple comparisons 175
7.2 Two-way ANOVA 177
7.2.1 Interactions 178
7.2.2 Comparing models 180
7.2.3 Diagnostics 181
7.3 Multiple linear regression 182
7.4 Linear models with factors and continuous variables 186
7.4.1 Predicted effects 188
7.4.2 Using predicted effects to make sense of model output 192
7.4.3 Quadratic and polynomial terms 197
7.5 Generalized Linear Models 200
7.5.1 Logistic Regression 200
7.5.2 Poisson regression 205
7.6 Functions used in this chapter 207
7.7 Exercises 209
7.7.1 One-way ANOVA 209
7.7.2 Two-way ANOVA 209
7.7.3 Multiple regression 209
7.7.4 Linear Model with factor and numeric variables 209
7.7.5 Logistic regression 210
7.7.6 Generalized linear model (GLM) 210
8 Functions, lists and loops 211
8.1 Writing simple functions 211
8.2 Working with lists 213
8.2.1 Creating lists from dataframes 217
8.2.2 Applying functions to lists 218
8.3 Loops 221
8.4 Advanced working example 223
8.5 Functions used in this chapter 226
8.6 Exercises 227
8.6.1 Writing functions 227
8.6.2 Working with lists 227
8.6.3 Using functions to make many plots 228
8.6.4 Monthly weather plots 228
8.6.5 The Central limit theorem 228
9 Project management and workflow 230
9.1 Tips on organizing your code 230
9.2 Set up a project in Rstudio 231
9.3 Directory structure 231
9.4 The R scripts 232
9.5 Archiving the output 234
10 Hints 236
10.1 Identifying and managing different types of objects 236
10.1.1 Vectors 236
10.1.2 Matrices 237
10.1.3 Lists 238
10.1.4 Dataframes 239
11 Getting Help 241
11.1 Web 241
11.2 Free online books 241
11.3 Blogs 241
11.4 Finding packages 242
11.5 Offline paper books 242
A Description of datasets 243
A. 1 Tree allometry 243
A. 2 Coweeta tree data 243
A. 3 Hydro dam 244
A. 4 Rain 244
A. 5 Weight loss 244
A. 6 Pupae 244
A. 7 Cereals 245
A. 8 Flux tower data 245
A. 9 Pulse rates before and after exercise 246
A. 10 Weather data at the HFE 247
A. 11 Age and memory 247
A. 12 Passengers on the Titanic 247
A. 13 Xylem vessel diameters 248
A. 14 Eucalyptus leaf endophytes 248
A. 15 I x F at the HFE - plot averages 248
A. 16 I x F at the HFE - tree observations 249
A. 17 Dutch election polls 249
A. 18 Tibetan Plateau plant community data 250
A. 19 Genetically modified soybean litter decomposition 250
A. 20 EucFACE ground cover data 251
A. 21 Tree canopy gradients in the Priest River Experimental Forest (PREF) 251
A. 22 Seed germination 251
A. 23 Leaf gas exchange at the EucFACE 252
A. 24 Howell height, age and weight data 253
A. 25 Wild mouse metabolism 253
A. 26 Plant drought tolerance 253
A. 27 Child anthropometry 254
A. 28 Alphabet 254

Chapter 1

Basics of R

1.1 Installing R and so on

If you are reading this at the HIE R course, the computers in this room already have \mathbf{R} and RStudio installed. There is no need to update. Do take note of the recommended settings in RStudio discussed in Section 1.1.2.

1.1.1 R installation

Throughout this book, we assume you use RStudio. However, you still have to install R. RStudio is a program that runs \mathbf{R} for us, and adds lots of functionality. You normally don't have to open the \mathbf{R} program directly, just use RStudio (see next Section 1.1.2).

To install R on your system, go here : http://cran.r-project.org, click on the download link at the top, and then 'base', and finally download the installer.

Run the installer, and simply press OK on all windows (since you will be using RStudio, the settings here don't matter).

It is a good idea to install newer versions of \mathbf{R} when they become available. Simply repeat this process or see another solution in Section 1.11.

1.1.2 Using and installing RStudio

We will use RStudio throughout this course (but see note above, you need to install \mathbf{R} first). To download RStudio, go here: www.rstudio .org to download it (Windows or Mac).
Take some time to familiarize yourself with RStudio. When you are using a new installation of RStudio, the default behaviour is to save all your objects to an 'RData' file when you exit, and loads the same objects when you open RStudio. This is very dangerous behaviour, and you must turn it off. See Section 1.13 for more information on 'RData' files. For now, make sure you go to Tools \Global Options... and on the General tab, make sure the settings are like the figure below.

Another feature you may want to turn off is the automatic code completion, which is now a standard feature in RStudio. If you are using an older version of RStudio, this won't apply (and you won't be able to find the settings in the figure below).

Restore .RData into workspace at startup
Save workspace to .RData on exit: Never
Always save history (even when not saving .RData)
Figure 1.1: Settings in Tools/Global Options/General, to prevent automatically loading objects from a previous session. This contaminates your workspace, causing problems that are difficult to spot.

Figure 1.2: Settings in Tools \Global Options \Code >Completion to avoid automatic completion of your code, which opens hint windows as you type. Some people find this helpful, others find it annoying and distracting.

1.2 Basic operations

1.2.1 R is a calculator

When you open the \mathbf{R} console, all you see is a friendly > staring at you. You can simply type code, hit Enter, and \mathbf{R} will write output to the screen.
Throughout this tutorial, \mathbf{R} code will be shown together with output in the following way:

```
# I want to add two numbers:
1 + 1
## [1] 2
```

Here, we typed $1+1$, hit Enter, and \mathbf{R} produced 2. The [1] means that the result only has one element (the number '2').

In this book, the \mathbf{R} output is shown after \#\#. Every example can be run by you, simply copy the section (use the text selection tool in Adobe reader), and paste it into the console (with Ctrl)+Enter on a Windows machine, or Cmd + Enter on a Mac).
We can do all sorts of basic calculator operations. Consider the following examples:

```
# Arithmetic
12 * (10 + 1)
## [1] 132
# Scientific notation
3.5E03 + 4E-01
## [1] 3500.4
# pi is a built-in constant
sin(pi/2)
## [1] 1
# Absolute value
```

```
abs (-10)
## [1] 10
# Yes, you can divide by zero
1001/0
## [1] Inf
# Square root
sqrt(225)
## [1] 15
# Exponents
15~2
## [1] 225
# Round down to nearest integer (and ceiling() for up or round() for closest)
floor(3.1415)
## [1] 3
```

Try typing ?Math for description of more mathematical functions.
Also note the use of \# for comments: anything after this symbol on the same line is not read by \mathbf{R}. Throughout this book, comments are shown in green.

1.3 Working with scripts and markdown files

When working with \mathbf{R}, you can type everything into the console, just as you did in the last few examples. However, you've probably already noticed this has some disadvantages. It's easy to make mistakes, and annoying to type everything over again to just correct one letter. It's also easy to loose track of what you've written. As you move on to working on larger, more complicated projects (in other words, your own data!) you will quickly find that you need a better way to keep track of your analyses. (After all, have you ever opened up a spreadsheet full of data six months after you started it, and spent the whole day trying to reconstruct just what units you used in column D?)

Luckily R and RStudio provide a number of good ways to do this. In this course we will focus on two, scripts and markdown documents.

1.3.1 R scripts

Scripts offer the simplest form of repeatable analysis in R. Scripts are just text files that contain code and comments. Script files should end in .R.

In RStudio, open a new script using the File menu: File \geqslant New File \geqslant R Script, and save it in your current working directory with an appropriate name (for example, 'rcourse_monday.R'). (Use File Save, note that your working directory is the default location).
A brand new script is completely empty. It's a good idea to start out a new script by writing a few comments:

```
# HIE R Course - Monday
# Notes by <your name here>
# <today's date>
```

```
# So far we've learned that R is a big calculator!
1+1
```

As we mentioned in Section 1.2.1, the \# symbol indicates a comment. On each line, \mathbf{R} does not evaluate anything that comes after \#. Comments are great for organizing your code, and essential for reminding yourself just what it was you were intending. If you collaborate with colleagues (or your supervisor), you'll also be very grateful when you see comments in their code - it helps you understand what they are doing.

Try this yourself Sometimes, you might want to write code directly into the console, and add it to a script later, once it actually works as expected. You can use the History tab in RStudio to save some time. There, you can select one or more lines, and the button To Source will copy it to your script.
Try it now. Select one line by clicking on it, and send it to your script file using To Source. You can use this feature to add all of the examples we typed in Section 1.2.1 to your notes. To select more than one line at a time, hold down Shift. You can then send all the examples to your new script file with one click.

1.3.2 Using scripts to program with objects

It gets more interesting when we introduce objects. Objects are named variables that can hold different values. Once you have to keep track of objects, you'll naturally want to use scripts so that you can easily remember what value has been assigned to what object. Try adding these examples to your sample script:

```
# Working with objects
# Define two objects
x <- 5
y<- 2 * x
# ... and use them in basic a calculation.
x + y
```

Note the use of <- : this is an operator that assigns some content to an 'object'. The arrow points from the content to the object. We constructed two objects, x and y.

Now let's run the script. You can run your entire script by clicking the Source button in the top right. Or, more conveniently, you can select sections of your script with the mouse, and click Run, or by pressing Ctrl + Enter (Cmd + Enter on a Mac). If nothing is selected, the current line of code will be executed. The results from running the script above look like this (note that the comments are sent to the console along with the code):

```
# Working with objects
# Define two objects
x <- 5
y<- 2 * x
# ... and use them in a basic calculation.
x + y
```

\#\# [1] 15
Objects you've created (in this case, x and y) remain in memory, so we can reuse these objects until we close R. Notice that the code and comments are echoed to the console, and shown along with the final results.

Let's add some more calculations using x and y :

```
# ... a few more calculations:
```

x * y
y / x
($\mathrm{x} * \mathrm{y}$) / x

Run your script by clicking source or highlighting a few lines and typing Ctrl-Enter or Cmd-Enter. You should get these results:

```
## [1] 50
## [1] 2
## [1] 10
```

If you like, try adding some of your own calculations using x and y, or creating new objects of your own. You can also assign something else to the object, effectively overwriting the old x .

```
# Reassigning an object
# Before:
message(x)
## 5
x <- "Hello world"
# After:
message(x)
## Hello world
```

Here we assigned a character string to x, which previously held an numerical value. Note that it is not a problem to overwrite an existing object with a different type of data (unlike some other programming languages).

Try this yourself Note that RStudio has four panes: the R script, the R console, Files/Plots/Packages/Help and Environment/History. You can change the placement of the panes in Tools Global options... Pane layout. Change the layout to your liking.
You can also change the appearance of code in the script pane and the R console pane. Take a look at the styles in Tools Global Options... /Appearance, and then pick one in the Editor theme list.

1.3.3 Working with markdown files

Script files are good for simple analyses, and they are great for storing small amounts of code that you would like to use in lots of different projects. But, they are not the best way to share your results with others. Most of all, R scripts, no matter how well commented, are not suitable for submission as journal articles. For that, we need to incorporate all our exciting results and beautiful figures into a document with an introduction, methods, results, and discussion and conclusions.

Fortunately, there is an easy way to do this. It also makes a great way to keep track of your work as you are developing an analysis. This is know as an R markdown file. Markdown is a simple set of rules for formatting text files so that they are both human-readable and processable by software. The knitr
package (as used by RStudio) will take a markdown-formatted text file and produce nicely-formatted output. The output can be a Word document, HTML page, or PDF file. If you need to install knitr, instructions for installing new packages can be found in Section 1.10. In the next example, we will show you how to use R markdown to output a word file. Word files are excellent for collaborating with your colleagues when writing manuscripts. HTML files can also be very useful - RStudio produces them quickly, and they are great for emailing and viewing online. They can also be used to present results in an informal meeting. PDF files are good for publishing finished projects. However, producing PDFs using RStudio and knitr requires installing other packages, which we won't cover here (see the Further Reading for more suggestions if you are interested in doing this.)

Further reading To make PDFs using R markdown, you will need to install additional software. This software interfaces with a typesetting environment called LaTeX. On Windows, you will need to install MiKTeX (miktex.org, for instructions see miktex.org/howto/install-miktex). On Mac OS, you will need MacTeX (for both instructions and a download link see tug.org/mactex/mactex-download.html). On Linux, you will need to install TeX Live (see www.tug.org/texlive/). The other packages needed are automatically downloaded when you install RStudio. Once you have this software, http://rmarkdown.rstudio.com/pdf_document_format.html has a nice explanation of different features you can add to your document using this format.

In addition to Word, HTML, and PDF, it is also possible to create many other types of files with R markdown. You can for instance, make slideshows (select File New File R Markdown... then choose Presentation from the list of file types on the left). You can also make interactive documents, websites, and many other things using templates available in various \mathbf{R} packages. See http://rmarkdown.rstudio.com/ for tutorials on how to take advantage of this simple, but powerful way of writing documents.

RStudio offers a handy editor for markdown files. Start a new markdown file by choosing File New File R Markdown.... You will see the following dialogue box:

Figure 1.3: Go to File New File R Markdown, enter a title for your document and select Word document.

The new R markdown document (which is just a text file with the extension .Rmd) already contains some
example code. Run this example by clicking the button just above the markdown document Knit Word (it will ask you to save the document first if you haven't already).

The example code will generate a new document, which opens in MS Word. You can see that the output contains text, R code, and even a plot.
We suggest using R markdown to organize your notes throughout this course, and especially to organize any analyses that you are producing for scientific projects.
Let's take a look at the example markdown file and see what things need to be changed to make it your own. The first thing in the file is the header. This probably already includes your name, a title, the date you created the file, and the type of output you would like to produce (in this case, a Word document).

```
---
title: "Basic R calculations in markdown"
author: "Remko Duursma"
date: "16 September 2015"
output: word_document
---
```

After the header, you'll see two kinds of text: chunks of R code and regular text.

1.3.4 R code in markdown

The first thing you will see under the header in your new markdown document is a grey box:

```
\cdots`{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
```

You can delete the rest of the example code that came with the file, but keep this box. It contains a chunk of R code to set the options for the markdown document and the software that processes it (a package known as knitr). Don't worry too much about these options right now. Instead, notice that the chunk starts and ends with three accent characters (found to the left of the numeric keys on QWERTY keyboards):

This tells the software that you are starting a chunk of R code. You can use this syntax to add your own chunks of code to the markdown file. At the start of the chunk, you have several options - you can give the chunk a name (for example, setup), you can set whether to show or not show the code (echo), and whether or not to evaluate code (eval). There are other options, but these are the ones you will use the most.

Table 1.1: Options for code chunks within an markdown document.

Option	What it sets	Possible values
echo	Should the code be shown in the final document?	TRUE, FALSE
eval	Should the results be shown in the final document?	TRUE, FALSE

Try this yourself Make code chunks that vary the options echo and eval. For instance, try \{r echo=TRUE, eval=FALSE\} and compare the results with \{r echo=FALSE, eval=TRUE\}. Can you imagine situations where you would want to use one or the other?

Within the code chunks themselves, you can type R code just as you normally would. \#Comments are treated as comments, objects are treated as objects, and expressions are evaluated and values are returned.

1.3.5 Body text in markdown

What makes markdown distinct from a script is the flexibility you have to create much larger and more descriptive text blocks (and in RStudio, you can spell check them, too!) This allows you to write documents that contain complex analyses and results that a ready to share.
All of the text outside of the R code chunks is interpreted as body text. Markdown is designed to be simple to use, but you may find the first few symbols you see a bit mysterious. Here's a quick guide to what's going on:

Table 1.2: Basic markdown formatting

Formatting option	Symbols	Example
Headings	\#	\#Example Heading
Subheadings	\#\#	\#\#Subheading
Bold	**	**bold text**
Italic	*	*italic text*
Strike through	~	$\sim \sim$ crossed-out text ${ }^{\sim}$
Superscript	-	$\mathrm{x}^{\wedge} 2^{\wedge}$
Subscript	\sim	$\mathrm{CO} \sim^{\sim}$
Bulleted lists	*	* A list item * Another list item * Yet another list item
Numbered lists	1.	1. First list item 2. Second list item 3. Third list item
Horizontal rule Line break	three or more - two or more spaces plus return	----

Here's a silly example that combines headings, emphasis, lists, superscripts, and line breaking:

```
# Making your mark
When you first start your degree, you might be confident that a person with your talents
will impress his or her colleagues, and that you will be able to make lasting
contributions to your field. Or, you might feel the opposite: sure that everyone around
you is brilliant, and just hopeful that you will be allowed to work away without
attracting too much notice. Both are very common ways to feel, and as you move through
your degree, both feelings are likely to change. Don't get discouraged! As Dory would
say,
    "Just keep swimming,
    swimming,
    swimming..."
## The *R Markdown* way
1. Get a good marker^^1^^
2. Strike **boldly**
3. Watch out for the people with the erasers!
```

```
###^^1^^Suggested marker brands
* Sharpie
* Expo
* Mr. Sketch
```

When processed by knitr and opened in Word, the results look something like this:

Abstract

Making your mark When you first start your degree, you might be confident that a person with your talents will impress his or her colleagues, and that you will be able to make lasting contributions to your field. Or, you might feel the opposite: sure that everyone around you is brilliant, and just hopeful that you will be allowed to work away without attracting too much notice. Both are very common ways to feel, and as you move through your degree, both feelings are likely to change. Don't get discouraged! As Dory would say, "Just keep swimming, swimming, swimming..."

\section*{The R Markdown way} 1. Get a good marker ${ }^{1}$ 2. Strike boldly 3. Watch out for the people with the erasers! ${ }^{1}$ Suggested marker brands - Sharpie - Expo - Mr. Sketch

Figure 1.4: A short example of a Word document formatted using markdown.
Try this yourself Experiment with the different types of markdown formatting. If you would like a guide, the file Ch1_Basics_of_R.Rmd can be found with your course notes and contains the examples shown in this section. Try rearranging or changing the code in this file.

1.3.6 Putting it together: notebooks in markdown

The real power of markdown, though, is to be able to build notebooks that you can use to combine code and text.

1.4 Working with vectors

A very useful type of object is the vector, which is basically a string of numbers or bits of text (but not a combination of both). The power of \mathbf{R} is that most functions can use a vector directly as input, which greatly simplifies coding in many applications.
Let's construct an example vector with 7 numbers:
nums1 <- c $(1,4,2,8,11,100,8)$

We can now do basic arithmetic with this numeric vector :

```
# Get the sum of a vector:
sum(nums1)
## [1] 134
# Get mean, standard deviation, number of observations (length):
mean(nums1)
## [1] 19.14286
sd(nums1)
## [1] 35.83494
length(nums1)
## [1] 7
# Some functions result in a new vector, for example:
rev(nums1) # reverse elements
## [1] }810
cumsum(nums1) # cumulative sum
## [1] 
```

There are many more functions you can use directly on vectors. See Table 1.3 for a few useful ones.
Table 1.3: A few useful functions for vectors. Keep in mind that \mathbf{R} is case-sensitive!

Function	What it does	Example
length	Returns the length of the vector	length(nums1)
rev	Reverses the elements of a vector	rev(nums1)
sort	Sorts the elements of a vector	sort(nums1)
order	Returns the order of elements in a vector	order (nums1)
head	Prints the first few elements of a vector	head (nums1, 3)
max	Returns the maximum value in a vector	max (nums1)
min	Returns the minimum value in a vector	min(nums1)
which.max	Which element of the vector contains the max value?	which.max(nums1)
which.min	Which element of the vector contains the min value?	which.min(nums1)
mean	Computes the mean of a numeric vector	mean(nums1)
median	Computes the median of a numeric vector	median(nums1)
var	Computes the variance of a vector	var (nums1)
sd	Computes the standard deviation of a vector	sd(nums1)
cumsum	Returns the cumulative sum of a vector	cumsum(nums1)
diff	Sequential difference between elements of a vector	diff(1:10)
unique	Lists all the unique values of a vector	unique(c(5,5,10,10,11))
round	Rounds numbers to a specified number of decimal points	round(2.1341,2)

Try this yourself Some of the functions in Table 1.3 result in a single number, others give a vector of the same length as the input, and for some functions it depends. Try to guess what the result should look like for the listed functions, and test some of them on the nums 1 vector that we constructed above.

Vectorized operations

In the above section, we introduced a number of functions that you can use to do calculations on a vector of numbers. In \mathbf{R}, a number of operations can be done on two vectors, and the result is a vector itself. Basically, \mathbf{R} knows to apply these operations one element at a time. This is best illustrated by some examples:

```
# Make two vectors,
vec1 <- c(1, 2,3,4,5)
vec2 <- c(11,12,13,14,15)
# Add a number, element-wise
vec1 + 10
## [1] [11
# Element-wise quadratic:
vec1~2
## [1] [lllllll
# Pair-wise multiplication:
vec1 * vec2
## [1] 11 1}24\mp@code{39
# Pair-wise division
vec1 / vec2
## [1] 0.09090909 0.16666667 0.23076923 0.28571429 0.33333333
# Pair-wise difference:
vec2 - vec1
## [1] 10}1010 10 10 1
# Pair-wise sum:
vec1 + vec2
## [1] 12 14 16 18 20
# Compare the pair-wise sum to the sum of both vectors:
sum(vec1) + sum(vec2)
## [1] 80
```

In each of the above examples, the operators (like + and so on) 'know' to make the calculations one element at a time (if one vector), or pair-wise (when two vectors). Clearly, for all examples where two vectors were used, the two vectors need to be the same length (i.e., have the same number of elements).

Applying multiple functions at once

In R, we can apply functions and operators in combination. In the following examples, the innermost expressions are always evaluated first. This will make sense after some examples:

```
# Mean of the vector 'vec1', *after* squaring the values:
mean(vec1^2)
## [1] 11
# Mean of the vector, *then* square it:
```

```
mean(vec1)~2
## [1] 9
# Standard deviation of 'vec1' after subtracting 1.2:
sd(vec1 - 1.2)
## [1] 1.581139
# Standard deviation of vec1, minus 1.2:
sd(vec1) - 1.2
## [1] 0.3811388
# Mean of the log of vec2:
mean(log(vec2))
## [1] 2.558972
# Log of the mean of vec2:
log(mean(vec2))
## [1] 2.564949
# Mininum value of the square root of pair-wise sum of vec1 and vec2:
min(sqrt(vec1 + vec2))
## [1] 3.464102
# The sum of squared deviations from the sample mean:
sum((vec1 - mean(vec1)) ^2)
## [1] 10
# The sample variance:
sum((vec1 - mean(vec1))~2) / (length(vec1) - 1)
```

```
## [1] 2.5
```

```
## [1] 2.5
```

Try this yourself Confirm that the last example is equal to the sample variance that \mathbf{R} calculates (use var).

Character vectors

A vector can also consist of character elements. Character vectors are constructed like this (don't forget the quotes, otherwise \mathbf{R} will look for objects with these names - see Exercise 1.15.5).

```
words <- c("pet","elk","star","apple","the letter r")
```

Many of the functions summarized in the table above also apply to character vectors with the exception of obviously numerical ones. For example, the sort function to alphabetize a character vector:

```
sort(words)
## [1] "apple" "elk" "pet" "star"
## [5] "the letter r"
```

And count the number of characters in each of the elements with nchar,

```
nchar(words)
```

\#\# [1] 3 3 3 4 5 12

We will take a closer look at working with character strings in a later chapter (see Section 3.5)

1.5 Working with matrices

Another type of object is a matrix. A matrix is like a vector, except that it contains both rows and columns (a bit like an Excel spreadsheet.) Like vectors, matrices can contain only one type of data at a time.

The easiest way to construct a matrix is to make a vector, then give it dimensions:

```
# Notice that, by default, R fills down columns, from left to right:
mat1 <- matrix(c(1,2,3,4,5,6,7,8,9), nrow=3, ncol=3)
# A matrix can also be filled by rows:
mat2 <- matrix(c(1,2,3,4,5,6,7,8,9), nrow=3, ncol=3, byrow=TRUE)
```

As with vectors, we can do basic arithmetic with a numeric matrix :

```
# Get the sum of a vector:
sum(mat1)
## [1] 45
# Get mean, standard deviation, and number of observations (length):
mean(mat1)
## [1] 5
sd(mat1)
## [1] 2.738613
length(mat1)
## [1] 9
```

We can also do arithmetic on matrices. As with vectors, simple arithmetic will be applied to each element at a time:

```
# Addition
# Add a single number to all the elements of a matrix:
mat1 + 10
\begin{tabular}{lrrr} 
\#\# & {\([, 1]\)} & {\([, 2]\)} & {\([, 3]\)} \\
\#\# [1,] & 11 & 14 & 17 \\
\#\# [2,] & 12 & 15 & 18 \\
\#\# [3,] & 13 & 16 & 19
\end{tabular}
# Multiplication
# Each element is multiplied by 10:
mat2 * 10
## [,1] [,2] [,3]
## [1,] 10 20 30
## [2,] 40 50 60
## [3,] 70 80 90
```

Again as with vectors, if we do arithmetic on two matrices at a time, each corresponding element in the two matrices is used:

```
# Multiply two matrices; this multiplies each element with each other
# Obviously, the matrices have to have the same dimensions for this to work:
mat1 * mat2
\begin{tabular}{lrrr} 
\#\# & {\([, 1]\)} & {\([, 2]\)} & {\([, 3]\)} \\
\#\# [1,] & 1 & 8 & 21 \\
\#\# [2,] & 8 & 25 & 48 \\
\#\# [3,] & 21 & 48 & 81
\end{tabular}
```

In addition to basic arithmetic, there are many functions designed specifically to work with matrices. For instance, diag returns a vector with the diagonal elements of a matrix:

```
diag(mat1)
## [1] 1 5 9
```

The functions rowSums and colSums calculate the sums of rows and columns,

```
# Sums of rows and columns:
rowSums(mat1)
## [1] 12 15 18
colSums(mat1)
## [1] 6 15 24
```

and corresponding functions rowMeans and colMeans calculate the means.
One of the special operations that applies only to matrices is the t function, which stands for transpose. To transpose a matrix is to flip it so that the rows become the columns, and the columns become the rows:

```
# Transpose a matrix
t(mat1)
\begin{tabular}{lrrr} 
\#\# & {\([, 1]\)} & {\([, 2]\)} & {\([, 3]\)} \\
\#\# [1,] & 1 & 2 & 3 \\
\#\# [2,] & 4 & 5 & 6 \\
\#\# [3,] & 7 & 8 & 9
\end{tabular}
```

Matrices can be a useful way to organize data, but in \mathbf{R} it is generally more common to use dataframes, which allow you to combine more than one type of data in a single object. Nonetheless, some basic skills in matrices are useful as a number of built-in functions in \mathbf{R} return matrices as output.

Further reading The Quick-R website has a good explanation of matrix-related functions http://www.statmethods.net/advstats/matrix.html, as well as many other resources and cheat sheets. If you are well-versed in linear algebra and would like to use \mathbf{R} to do these type of calculations, http://www.ats.ucla.edu/stat/r/library/matrix_alg.htm has a helpful guide.

1.6 Generating data

1.6.1 Sequences of numbers

Let's look at a few ways to generate sequences of numbers that we can use in the examples and exercises. There are also a number of real-world situations where you want to use these functions.

First, as we saw already, we can use c() to 'concatenate' (link together) a series of numbers. We can also combine existing vectors in this way, for example:

```
a <- c(1,2,3)
b}<-c(4,5,6
c(a,b)
## [1] 1 2 3 4 5 6
```

We can generate sequences of numbers using :, seq and rep, like so:

```
# Sequences of integer numbers using the ":" operator:
1:10 # Numbers 1 through 10
## [1] 1.llllllllllll
5:-5 # From 5 to -5, backwards
## [1] 5
# Examples using seq()
seq(from=10,to=100, by=10)
## [1] 10
seq(from=23, by=2, length=12)
## [1] 23 25 27 29 31 33 35 37 39 41 43 45
# Replicate numbers:
rep(2, times = 10)
## [1] 2 2 2 2 2 2 2 2 2 2
rep(c(4,5), each=3)
## [1] 4 4 4 5 5 5
```

The rep function works with any type of vector. For example, character vectors:

```
# Simple replication
rep("a", times = 3)
## [1] "a" "a" "a"
# Repeat elements of a vector
rep(c("E. tereticornis","E. saligna"), each=3)
## [1] "E. tereticornis" "E. tereticornis" "E. tereticornis" "E. saligna"
## [5] "E. saligna" "E. saligna"
```


1.6.2 Random numbers

We can draw random numbers using the runif function. The runif function draws from a uniform distribution, meaning there is an equal probability of any number being chosen.

```
# Ten random numbers between 0 and 1
runif(10)
## [1] 0.7442395 0.3790803 0.8631886 0.9411621 0.5763844 0.2615688 0.4333280
## [8] 0.9892643 0.8201224 0.6572166
# Five random numbers between 100 and 1000
runif(5, 100, 1000)
```

Try this yourself The runif function is part of a much larger class of functions, each of which returns numbers from a different probability distribution. Inspect the help pages of the functions rnorm for the normal distribution, and rexp for the exponential distribution. Try generating some data from a normal distribution with a mean of 100 , and a standard deviation of 10.

Next, we will sample numbers from an existing vector.
numbers <- 1:15
sample(numbers, size=20, replace=TRUE)

\#\# [1] | | 8 | 5 | 6 | 1 | 12 | 11 | 11 | 8 | 7 | 7 | 7 | 8 | 2 | 5 | 2 | 12 | 4 | 15 | 1 | 11 |
| :--- |

This command samples 20 numbers from the numbers vector, with replacement.

1.7 Objects in the workspace

In the examples above, we have created a few new objects. These objects are kept in memory for the remainder of your session (that is, until you close \mathbf{R}).
In RStudio, you can browse all objects that are currently loaded in memory. Objects that are currently loaded in memory make up your workspace. Find the window that has the tab 'Environment'. Here you see a list of all the objects you have created in this \mathbf{R} session. When you click on an object, a window opens that shows the contents of the object.

Alternatively, to see which objects you currently have in your workspace, use the following command:

```
ls()
```

```
## [1] "nums1" "vec1" "vec2" "words" "x" "y" "a"
```

\#\# [8] "b" "numbers"

To remove objects,
rm(nums1, nums2)
And to remove all objects that are currently loaded, use this command. Note: you want to use this wisely!

```
rm(list=ls())
```

Finally, when you are ending your \mathbf{R} session, but you want to continue exactly at this point the next time, make sure to save the current workspace. In RStudio, find the menu Session (at the top). Here you can save the current workspace, and also load a previously saved one. Alternatively, you can use the save. image function (see also Section 1.13).

1.8 Files in the working directory

Each time you run \mathbf{R}, it 'sees' one of your folders ('directories') and all the files in it. This folder is called the working directory. You can change the working directory in RStudio in a couple of ways.

The first option is to go to the menu Session \geqslant Set Working Directory $>$ Choose Directory... .

Or, find the 'Files' tab in one of the RStudio windows (usually bottom-right). Here you can browse to the directory you want to use (by clicking on the small ... button on the right), and click More \rangle Set as working directory.
You can also set or query the current working directory by typing the following code:

```
# Set working directory to C:/myR
setwd("C:/myR")
# What is the current working directory?
getwd()
```

Note: For Windows users, use a forward slash (that is, /), not a back slash!
Finally, you can see which files are available in the current working directory, as well as in subdirectories, using the dir function (Note: a synonym for this function is list.files).

```
# Show files in the working directory:
dir()
# List files in some other directory:
dir("c:/work/projects/data/")
# Show files in the subdirectory "data":
dir("data")
# Show files in the working directory that end in csv.
# (The ignore.case=TRUE assures that we find files that end in 'CSV' as well as 'csv',
# and the '[]' is necessary to find the '.' in '.csv'.
dir(pattern="[.]csv", ignore.case=TRUE)
```

Try this yourself List the R scripts in your current working directory (Hint: an R script should have the extension .R).

1.9 Keep a clean memory

When you start \mathbf{R}, it checks whether a file called . RData is available in the default working directory. If it is, it loads the contents from that file automatically. This means that, over time, objects can accumulate in your memory, cluttering your workspace and potentially causing problems, especially if you are using old objects without knowing it.

We recommend you collect all your working code in scripts or markdown files (see Section 1.3). For each new project, add a line of code to the top that guarantees you start out with a clean memory, as in the following example. It is also good practice to set the working directory at the top of your script, with setwd (see Section 1.8), to make sure all the relevant files can be accessed.

```
# Set working directory
setwd("C:/projects/data")
# Clean workspace
rm(list=ls())
```

This sort of workflow avoids common problems where old objects are being used unintentionally. In summary, always:

- Make sure you are in the correct working directory
- Make sure your workspace is clean, or contains objects you know
- Write scripts or markdown files that contain your entire workflow
- Once you have a working script (or markdown file), run the full file to make the final output

1.10 Packages

Throughout this tutorial, we will focus on the basic functionality of \mathbf{R}, but we will also call on a number of add-on'packages' that include additional functions. We will tell you which packages you need as they are called for. If, after running code from the book, you get "Error: could not find function 'example'", you can look up the function in the table at the end of the chapter to find out which package it comes from. You can find a full list of packages available for R on the CRAN site (http://cran.r-project.org/, navigate to 'Packages'), but be warned - it's a very long list! A more palatable index of packages is provided at http://r-pkg.org/.

In RStudio, click on the Packages tab in the lower-right hand panel. There you can see which packages are already installed, and you can install more by clicking on the Install button.
Alternatively, to install a particular package, simply type:
install.packages("gplots")
You will be asked to select a mirror (select a site closest to your location), and the package will be installed to your local library. The package needs to be installed only once. To use the package in your current \mathbf{R} session, type:
library (gplots)
This loads the gplots package from your library into working memory. You can now use the functions available in the gplots package. If you close and reopen \mathbf{R}, you will need to load the package again.
To quickly learn about the functions included in a package, type:
library(help=gplots)
If you are using packages in a script file, it is usually considered a good idea to load any packages you will be using at the start of the script.

1.10.1 Using packages in markdown files

Unfortunately, it is not possible to install new packages at the beginning of a markdown file. Any attempt to knit a file with install. packages will fail miserably. But, if you want the code in your file to run correctly, you need to have any relevant packages not only installed, but also loaded using the library () function. We may also not want any of the package startup messages to appear in our final document. What should we do?

We suggest two different ways of handling this. The first is simply to make sure that any needed packages are already installed before knitting, and include a block at the start of your markdown document that loads these packages:

```
title: "Basic R calculations in markdown"
```

```
author: "Remko Duursma"
date: "16 September 2015"
output: word_document
---
```r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
library(importantpackage1)
library(importantpackage2)
library(importantpackage3)
..
```

\#\# R Markdown
Add the rest of the text and code here...

Alternatively, you can use a package called pacman. This package is great for documents that you will be sharing - it means that your collaborators will not have to spend time finding any packages they don't have. It has a function p_load that checks whether a package is installed, installs it if it is not, and makes sure it is loaded. Using p_load in a markdown document will not cause knitting to fail. With pacman, the start of a markdown document would look like this:

```

title: "Basic R calculations in markdown"
author: "Remko Duursma"
date: "16 September 2015"
output: word_document

.'`{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
library(pacman)
p_load(importantpackage1)
p_load(importantpackage2)
p_load(importantpackage3)
.'.
```

\#\# R Markdown
Add the rest of the text and code here...

### 1.11 Updating R and packages

It is generally a good idea to always have the latest version of $\mathbf{R}$ installed on your computer. You can follow the installation instructions described in Section 1.1.1, or alternatively use the installr package (for Windows) or the updateR package (for Mac):

```
On Windows:
library(installr)
Downloads and installs the newest R version, if available.
Just follow the instructions and click OK.
```

```
updateR()
On Mac (requires the 'devtools' package is installed):
devtools::install_github("AndreaCirilloAC/updateR")
library(updateR)
Downloads and installs the newest R version, if available.
updateR(admin_password = "YOUR_PASSWORD_HERE")
```

The various contributed packages are routinely updated by the maintainers. Again, it is a very good idea to keep these up to date. If your code depends on an old package version, it may prevent your code from working on another computer. To update all packages, run the following command. Note: make sure to run this when you have just opened RStudio.

```
update.packages(ask=FALSE)
```

We recommend updating your packages about once a month.

### 1.12 Accessing the help files

Every function that you use in $\mathbf{R}$ has its own built-in help file. For example, to access the help file for the arithmetic mean, type:

## ?mean

This opens up the help file in your default browser (but you do not need to be online to read help files).
Functions added by loading new packages also have built-in help files. For example, to read about the function bandplot in the gplots package, type:
library (gplots)
?bandplot
Don't get overwhelmed when looking at the help files. Much of R's reputation for a steep learning curve has to do with the rather obscure and often confusing help files. A good tip for beginners is to not read the help files, but skip straight to the Example section at the bottom of the help file. The first line of the help file, which shows what kind of input, or arguments, the function takes, can also be helpful.
If you know what type of function that you are looking for but do not know its name, use ??. This searches the help files for a given keyword:
??ANOVA

### 1.13 Save a session in RData format

It is often useful to copy the results of an $\mathbf{R}$ session, so that you can continue later exactly where you left off - without having to execute all the code again.
We do this using save.image, which writes all objects that are currently in the workspace in a special file (an '.Rdata’ file).

```
Save the entire workspace:
save.image("august8.RData")
```

```
So you can return to where you were, like this:
load("august8.RData")
```

You can also write one or more selected objects an '.RData' file, using save.

```
Save one object, for later use.
save(myobject, file="myobject.RData")
and load it (this will make the object available in the workspace again).
load("myobject.RData")
or save multiple objects:
save(obj1, obj2, obj3, file="someobjects.RData")
```


### 1.14 Functions used in this chapter

For functions not listed here, please refer to the index at the end of this book.

Function	What it does	Example use
:	A handy little function that generates a sequence of numbers, counting by 1 , backwards or forwards.	$\begin{aligned} & 0: 18 \\ & 48:-8 \end{aligned}$
?	Finds help files for a specific function, package or dataset.	$?$ max
??	Finds help files that match a given topic	??correlation
c	Combines input to form a vector. Input must be of the same data type (e.g., only letters, only numbers, etc.)	$\begin{aligned} & c(1,2,5,9) \\ & c(\text { "imagine", "that") } \end{aligned}$
cbind	Can be used to combine two matrices horizontally, keeping the same number of rows but adding more columns.	$\begin{gathered} \operatorname{cbind}(\operatorname{matrix}(1: 4,2,2), \\ \operatorname{matrix}(1: 4,2,2)) \end{gathered}$
ceiling	Rounds numbers in its input to the next highest whole number. Returns a vector.	ceiling(c(4.999, 4.001$)$ )
colMeans	Returns means for each column of a matrix.	colMeans(matrix (1:4,2,2))
colSums	Returns sums for each column of a matrix.	colSums (matrix (1:4,2,2))
cor	Returns the correlation between two vectors, or between the columns of a matrix.	$\operatorname{cor}(\mathrm{c}(1,3,5,7), \mathrm{c}(4,2,8,6))$
cumsum	Calculates the cumulative sum of its input. For vectors, it returns a vector. For matrices, it adds down a column first, then continues with the next column. The result is returned as a vector.	cumsum (c ( $5,10,2,9)$ )
diag	Returns a vector with the diagonal elements of matrix.	$\operatorname{diag}(\operatorname{matrix}(1: 25,5,5))$
diff	Calculates the sequential difference between a series of numbers. The result is returned as a vector.	$\operatorname{diff}(\mathrm{c}(2,4,5,8))$
dir	Lists the files in a directory or folder. Default is the working directory, but other locations can be provided. The same as list.files.	$\begin{aligned} & \operatorname{dir}() \\ & \operatorname{dir}(" C: / ") \text { Windows } \\ & \text { dir("/Users/") Mac } \end{aligned}$
example	Runs the example code at the bottom of the help page for a given function.	example(cumsum)
floor	Rounds numbers in its input to the next lowest whole number. Returns a vector.	floor (c(4.999, 4.001))
head	Shows the first six elements of a vector or the first six rows of a matrix.	head(letters)
intersect	Returns the matching elements in two vectors.	intersect (c $(2,4), \mathrm{c}(1,2))$
length	Returns the length of a vector. For a matrix, it returns the total number of elements.	length (LETTERS)


Function	What it does	Example use
LETTERS,   letters	Not really functions, but vectors of the uppercase and lowercase English alphabet, always loaded and ready to use.	LETTERS   letters
list.files	The same as dir; provides a list of files in a directory.	list.files()
ls	Gives the names of all the objects currently in working memory.	ls()
max	Returns the largest value in its input.	$\max (1: 100)$
mean	Returns the arithmetic average of its input.	mean (c ( $1,2,3,10$ )
median	Returns the middle value of its input.	median (c ( $1,2,3,10$ )
min	Returns the smallest value in its input.	$\min (1: 100)$
nchar	Gives the number of characters in each element of a vector containing strings of text.	nchar(c("imagine", "that"))
order	Returns the order of elements in a vector. Note that this does not sort the vector. Instead, it tells you how the elements of the vector would need to be rearranged to sort them.	$\operatorname{order}(\mathrm{c}(9,5,8,2))$
rbind	A function that can be used to combine two matrices vertically, keeping the same number of columns but adding more rows.	$\begin{array}{r} \operatorname{rbind}(\text { matrix }(1: 4,2,2), \\ \operatorname{matrix}(1: 4,2,2)) \end{array}$
rep	Repeats its input a given number of times. Can be used on numbers, characters, and other kinds of data. Takes the arguments times: a number of times to repeat the input, each: a number of times to repeat each element of the input, and length. out: useful if you need output of an exact length.	```rep(1, times=5) rep(1:3, times=5) rep(1:3, each=5) rep(1:3, times=5, each=2) rep(1:3, length.out=5) rep("okay",10)```
rev	Reverses the contents of its input, and returns them as a vector.	rev(c("is","it", "cool"))
rexp	Generates random data with an exponential distribution. The first argument is the number of data points to generate, the second argument is the rate parameter. The rate parameter changes the steepness of the distribution. The default is one. It can be set as $1 /$ the desired mean of the data.	$(r \exp (1000, \operatorname{rate}=(1 / 5)))$
rm	Can be used to remove objects in the current workspace. To remove all objects, give ls() as the first argument.	$\begin{aligned} & \text { rm(x) } \\ & \text { rm(list=ls()) } \end{aligned}$
rnorm	Generates random data with a normal distribution. The first argument is the number of points to generate, the second argument is the mean, and the third argument is the standard deviation. Default for mean is 0 , and default for sd is 1.	$\begin{aligned} & \operatorname{rnorm}(100) \\ & \operatorname{rnorm}(10, \text { mean }=50, \quad \text { sd=25 }) \end{aligned}$


Function	What it does	Example use
round	Takes a vector of values, and rounds them to a given number of digits. The default for digits is 0.	$\begin{aligned} & \text { round }(3.1415) \\ & \text { round }(99.99999, \text { digits=2) } \end{aligned}$
rowMeans	Returns means for each row of a matrix.	rowMeans(matrix (1:4,2,2))
rowSums	Returns sums for each row of a matrix.	rowSums (matrix (1:4,2,2))
runif	Generates random data with a uniform distribution. The first argument is the number of points to generate, the second argument is the maximum value, and the third argument is the minimum. Default for max is 1 , and default for min is 0 .	$\begin{aligned} & \text { runif }(10) \\ & \text { runif }(10, \min =1, \max =6) \end{aligned}$
sample	Takes a given number of samples from a vector or a matrix. Can be set to sample with or without replacement. With replacement means that the same element can be sampled more than once. Without replacement allows each element to be sampled only once. Default is without replacement.	$\begin{aligned} & \text { sample(1:6, size=6) } \\ & \text { sample(1:6, 6, replace=TRUE) } \end{aligned}$
save	Saves an object to disk for later use.	save(x, file="My_object")
save.image	Saves a copy of the current workspace, which can be loaded at a later time. You can supply a file name.	save.image(file="Aug8.RData")
sd	Returns the standard deviation of the values in a vector or matrix.	sd(c (99, $85,50,87,89)$ )
seq	Generates a sequence of numbers from a given value to another given value. Can be set to count by $1 \mathrm{~s}, 2 \mathrm{~s}, 4 \mathrm{~s}$, etc.	$\begin{aligned} & \operatorname{seq}(1,10) \\ & \operatorname{seq}(1,10, \operatorname{by}=2.5) \end{aligned}$
setdiff	Takes two vectors of numbers as arguments. Returns only the numbers that are found in the first vector, but not in the second.	$\begin{aligned} & \operatorname{setdiff}(1: 5,4: 8) \\ & \operatorname{setdiff}(4: 8,1: 5) \end{aligned}$
setwd	Sets the current working directory. The working directory is the folder that $\mathbf{R}$ can see. By default, $\mathbf{R}$ will assume files are located in the working directory.	setwd("C:/RProject") Windows setwd("~/RProject") Mac
sort	Sorts a vector in ascending or descending order.	sort (1:5, decreasing=TRUE)
t	Stands for 'transpose'. Can be used to transpose a matrix - that is, to flip it so that rows become columns, and columns become rows.	$t(m a t r i x(c(1,2,3,1), 2,2))$
union	Produces the union of two vectors, without duplicates.	union(1:5,4:8)
unique	Returns only the unique values in a vector.	unique (c ( $1,2,1,5,5,2)$ )
var	Returns the variance of a vector or matrix.	$\operatorname{var}(\mathrm{c}(99,85,50,87,89))$


Function	What it does	Example use
which.max	Returns the position of the largest value in a vec-   tor. Contrast with max.	which.max $(\mathrm{c}(99,85,50,87,89))$
which.min	Returns the position of the smallest value in a vec-   tor. Contrast with min.	which.min (c $(99,85,50,87,89))$

### 1.15 Exercises

In these exercises, we use the following colour codes:
■ Easy: make sure you complete some of these before moving on. These exercises will follow examples in the text very closely.

- Intermediate: a bit harder. You will often have to combine functions to solve the exercise in two steps.
- Hard: difficult exercises! These exercises will require multiple steps, and significant departure from examples in the text.

We suggest you complete these exercises in an $\mathbf{R}$ markdown file. This will allow you to combine code chunks, graphical output, and written answers in a single, easy-to-read file.

### 1.15.1 Calculating

Calculate the following quantities:
1.■ The sum of $100.1,234.9$ and 12.01
2. $\quad$ The square root of 256
3. © Calculate the 10-based logarithm of 100, and multiply the result with the cosine of $\pi$. Hint: see ?log and ?pi.
4. Calculate the cumulative sum ('running total') of the numbers $2,3,4,5,6$.
5. Calculate the cumulative sum of those numbers, but in reverse order. Hint: use the rev function.
6. Find 10 random numbers between $o$ and 100 , rounded to the nearest whole number (Hint: you can use either sample or a combination of round and runif).

### 1.15.2 Simple objects

Type the following code, which assigns numbers to objects x and y .
x <- 10
y <- 20

1. $\square$ Calculate the product of $x$ and $y$
2. $■$ Store the result in a new object called $z$
3. Inspect your workspace by typing 1s(), and by clicking the Environment tab in Rstudio, and find the three objects you created.
4. Make a vector of the objects $\mathrm{x}, \mathrm{y}$ and z . Use this command,
myvec <- $c(x, y, z)$
5. $\square$ Find the minimum, maximum, length, and variance of myvec.
6. $■$ Remove the myvec object from your workspace.

### 1.15.3 Working with a single vector

1.     - The numbers below are the first ten days of rainfall amounts in 1996. Read them into a vector using the $\mathrm{c}($ ) function (recall Section 1.4 on p . 13).

$$
\begin{array}{llllllllll}
0.1 & 0.6 & 33.8 & 1.9 & 9.6 & 4.3 & 33.7 & 0.3 & 0.0 & 0.1
\end{array}
$$

Inspect Table 1.3 on page 14, and answer the following questions:
2. $■$ What was the mean rainfall, how about the standard deviation?
3. ■ Calculate the cumulative rainfall ('running total') over these ten days. Confirm that the last value of the vector that this produces is equal to the total sum of the rainfall.
4. $■$ Which day saw the highest rainfall (write code to get the answer)?

### 1.15.4 Scripts

This exercise will make sure you are able to make a 'reproducable script', that is, a script that will allow you to repeat an analysis without having to start over from scratch. First, set up an $\mathbf{R}$ script (see Section 1.3 on page 7), and save it in your current working directory.

1. ■ Find the History tab in Rstudio. Copy a few lines of history that you would like to keep to the script you just opened, by selecting the line with the mouse and clicking To Source.
2. ■ Tidy up your R script by writing a few comments starting with \#.
3. $\quad$ Now make sure your script works completely (that is, it is entirely reproducible). First clear the workspace (rm(list=ls()) or click Clear from the Environment tab). Then, run the entire script (by clicking Source in the script window, top-right).

### 1.15.5 To quote or not to quote

This short exercise points out the use of quotes in $\mathbf{R}$.

1. $\square$ Run the following code, which makes two numeric objects.
```
one <- 1
two <- 2
```

2. Run the following two lines of code, and look at the resulting two vectors. The first line makes a character vector, the second line a numeric vector by recalling the objects you just constructed. Make sure you understand the difference.
```
vector1 <- c("one","two")
vector2 <- c(one, two)
```

3. The following lines of code contain some common errors that prevent them from being evaluated properly or result in error messages. Look at the code without running it and see if you can identify the errors and correct them all. Also execute the faulty code by copying and pasting the text into the console (not typing it, R studio will attempt to avoid these errors by default) so you get to know some common error messages (but not all of these result in errors!).
vector1 <- c('one', 'two', 'three', 'four, 'five', 'seven')
vec.var <- $\operatorname{var}(c(1,3,5,3,5,1)$
vec.mean <- mean $(c(1,3,5,3,5,1))$
```
vec.Min <- Min(c(1, 3, 5, 3, 5, 1))
Vector2 <- c('a', 'b', 'f', 'g')
vector2
```


### 1.15.6 Working with two vectors

1. $■$ You have measured five cylinders, their lengths are:
$2.1,3.4,2.5,2.7,2.9$
and the diameters are :

## $0.3,0.5,0.6,0.9,1.1$

Read these data into two vectors (give the vectors appropriate names).
2. ■ Calculate the correlation between lengths and diameters (use the cor function).
3. - Calculate the volume of each cylinder $\left(\mathrm{V}=\right.$ length * pi * (diameter / 2) ${ }^{2}$ ).
4. Calculate the mean, standard deviation, and coefficient of variation of the volumes.
5. Assume your measurements are in centimetres. Recalculate the volumes so that their units are in cubic millimetres. Calculate the mean, standard deviation, and coefficient of variation of these new volumes.
6. You have measured the same five cylinders, but this time were distracted and wrote one of the measurements down twice:
$2.1,3.4,2.5,2.7,2.9$
and the diameters are :
$0.3,0.5,0.6,0.6,0.9,1.1$
Read these data into two vectors (give the vectors appropriate names). As above, calculate the correlation between the vectors and store in a new vector. Also generate a vector of volumes based on these vectors and then calculate the mean and standard deviations of the volumes. Note that some steps result in errors, others in warnings, and some run perfectly fine. Why were some vectors created and others were not?

### 1.15.7 Alphabet aerobics 1

For the second question, you need to know that the 26 letters of the Roman alphabet are conveniently accessible in R via letters and LETTERS. These are not functions, but vectors that are always loaded.

1. Read in a vector that contains "A", "B", "C" and "D" (use the c() function). Using rep, produce this:
```
"A" "A" "A" "B" "B" "B" "C" "C" "C" "D" "D" "D"
```

and this:

```
"A" "B" "C" "D" "A" "B" "C" "D" "A" "B" "C" "D"
```

2. Draw 10 random letters from the lowercase alphabet, and sort them alphabetically (Hint: use sample and sort). The solution can be one line of code.
3. Draw 5 random letters from each of the lowercase and uppercase alphabets, incorporating both into a single vector, and sort it alphabetically.
4. Repeat the above exercise but sort the vector alphabetically in descending order.

### 1.15.8 Comparing and combining vectors

Inspect the help page union, and note the useful functions union, setdiff and intersect. These can be used to compare and combine two vectors. Make two vectors :

```
x <- c(1, 2, 5, 9, 11)
y<- c(2,5,1,0,23)
```

Experiment with the three functions to find solutions to these questions.

1. Find values that are contained in both x and y
2. Find values that are in $x$ but not $y$ (and vice versa).
3. Construct a vector that contains all values contained in either x or y , and compare this vector to $c(x, y)$.

### 1.15.9 Into the matrix

In this exercise you will practice some basic skills with matrices. Recall Section 1.5 on p. 17.

1. Construct a matrix with 10 columns and 10 rows, all filled with random numbers between $o$ and 1 (see Section 1.6.2 on p. 19).
2. ■ Calculate the row means of this matrix (Hint: use rowMeans). Also calculate the standard deviation across the row means (now also use sd).
3. $\Delta$ Now remake the above matrix with 100 columns, and 10 rows. Then calculate the column means (using, of course, colMeans), and plot a frequency diagram (a 'histogram') using hist. We will see this function in more detail in a later chapter, but it is easy enough to use as you just do hist (myvector), where myvector is any numeric vector (like the column means). What sort of shape of the histogram do you expect? Now repeat the above with more rows, and more columns.

### 1.15.10 Packages

This exercise makes sure you know how to install packages, and load them. First, read Section 1.10 (p. 22).

1. ■ Install the car package (you only have to do this once for any computer).
2. $\quad$ Load the car package (you have to do this every time you open Rstudio).
3. Look at the help file for densityPlot (Read Section 1.12 on p. 24)
4. Run the example for densityPlot (at the bottom of the help file), by copy-pasting the example into a script, and then executing it.
5. Run the example for densityPlot again, but this time use the example function:
example(densityPlot)
Follow the instructions to cycle through the different steps.
6. Explore the contents of the car package by clicking first on the Packages tab, then finding the car package, and clicking on that. This way, you can find out about all functions a package contains (which, normally, you hope to avoid, but sometimes it is the only way to find what you are looking for). The same list can be obtained with the command library (help=car), but that displays a list that is not clickable, so probably not as useful.

### 1.15.11 Save your work

We strongly encourage the use of R markdown files or scripts that contain your entire workflow. In most cases, you can just rerun the script to reproduce all outputs of the analysis. Sometimes, however, it is useful to save all resulting objects to a file, for later use. First read Section 1.13 on p. 24.
Before you start this exercise, first make sure you have a reproducable script as recommended in the third exercise to this chapter.

1. Run the script, save the workspace, give the file an appropriate name (it may be especially useful to use the date as part of the filename, for example 'results_2015-02-27.RData'.
2. $\quad$ Now close and reopen Rstudio. If you are in the correct working directory (it should become a habit to check this with the getwd function, do it now!), you can load the file into the workspace with the load function. Alternatively, in Rstudio, go to File/Open File . . . and load the workspace that way.

## Chapter 2

## Reading and subsetting data

### 2.1 Reading data

There are many ways to read data into $\mathbf{R}$, but we are going to keep things simple and show only a couple of options. Let's assume you have a fairly standard dataset, with variables organized in columns, and individual records in rows, and individual fields separated by a comma (a comma-separated values (CSV) file). This is a very convenient and safe way to read in data. Most programs can save data to this format if you choose File $>$ Save As... and select Comma Separated Values from the drop-down Format menu. If your data is not in a CSV file, see Section 2.1.2 on how to read other formats into R.

### 2.1.1 Reading CSV files

Use the function read.csv to read in the first example dataset ('Allometry.csv'). This assumes that the file 'Allometry.csv' is in your current working directory. Make sure you fully understand the concept of a working directory (see Section 1.8) before continuing.

```
allom <- read.csv("Allometry.csv")
```

If the file is stored elsewhere, you can specify the entire path (this is known as an absolute path).

```
allom <- read.csv("c:/projects/data/Allometry.csv")
```

Or, if the file is stored in a sub-directory of your working directory, you can specify the relative path.
allom <- read.csv("data/Allometry.csv")
The latter option is probably useful to keep your data files separate from your scripts and outputs in your working directory. We will not discuss how to organize your files here, but return to this important topic in Chapter 9.
The previous examples read in an entire dataset, and stored it in an object I called allom. This type of object is called a dataframe. We will be using dataframes a lot throughout this book. Like matrices, dataframes have two dimensions: they contain both columns and rows. Unlike matrices, each column can hold a different type of data. This is very useful for keeping track of different types of information about data points. For example, you might use one column to hold height measurements, and another to hold the matching species IDs. When you read in a file using read.csv, the data is automatically stored in a dataframe. Dataframes can also be created using the function data.frame. More on this in Section 2.1.2.

To read a description of this example dataset, see Section A. 1 on page 243.
To look at the entire dataset after reading, simply type the name of the dataframe. This is called printing an object.
allom
Alternatively, in RStudio, find the dataframe in the Environment tab. If you click on it, you can inspect the dataframe with a built-in viewer (opens up in a separate window).
It is usually a better idea to print only the first (or last) few rows of the dataframe. R offers two convenient functions, head and tail, for doing this.

head(allom)					
\#\#	species diameter	height	leafarea		
\#\# 1	PSME	54.61	27.04	338.485622	410.24638
\#\# 2	PSME	34.80	27.42	122.157864	83.65030
\#\# 3	PSME	24.89	21.23	3.958274	3.51270
\#\# 4	PSME	28.70	24.96	86.350653	73.13027
\#\# 5	PSME	34.80	29.99	63.350906	62.39044
\#\# 6	PSME	37.85	28.07	61.372765	53.86594
tail (allom)					
\#\#	species	diameter	height	leafarea	branchmass
\#\# 58	PIMO	73.66	44.64	277.494360	275.71655
\#\# 59	PIMO	28.19	22.59	131.856837	91.76231
\#\# 60	PIMO	61.47	44.99	121.428976	199.86339
\#\# 61	PIMO	51.56	40.23	212.443589	220.55688
\#\# 62	PIMO	18.29	12.98	82.093031	28.04785
\#\# 63	PIMO	8.38	4.95	6.551044	4.36969

Note that the row numbers are shown on the left. These can be accessed with rownames (allom).
The function read.csv has many options, let's look at some of them. We can skip a number of rows from being read, and only read a fixed number of rows. For example, use this command to read rows 10-15, skipping the header line (which is in the first line of the file) and the next 9 lines. Note: you have to skip 10 rows to read rows 10-15, because the header line (which is ignored) counts as a row in the text file!

```
allomsmall <- read.csv("Allometry.csv", skip=10, nrows=5, header=FALSE)
```


### 2.1.2 Reading other data

## Excel spreadsheets

A frequently asked question is: "How can I read an Excel spreadsheet into R?" The shortest answer is: don't do it. It is generally good practice to store your raw data in comma-separated values (CSV) files, as these are simple text files that can be read by any type of software. Excel spreadsheets may contain formulas and formatting, which we don't need, and usually require Excel to read.

In this book, we assume you always first save an XLS or XLSX file as a CSV. In Excel, select File 》 Save as..., click on the button next to 'Save as type...' and find 'CSV (Comma delimited) (*.csv)'.
If you do need to read an XLS or XLSX file, the readxl package works very well. Note: avoid older implementations like the xlsx package and read.xls in the gtools package, which are less reliable.

## Tab-delimited text files

Sometimes, data files are provided as text files that are TAB-delimited. To read these files, use the following command:

```
mydata <- read.table("sometabdelimdata.txt", header=TRUE)
```

When using read.table, you must specify whether a header (i.e., a row with column names) is present in the dataset.

If you have a text file with some other delimiter, for example ;, use the sep argument:

```
mydata <- read.table("somedelimdata.txt", header=TRUE, sep=";")
```


## Reading typed data

You can also write the dataset in a text file, and read it as in the following example. This is useful if you have a small dataset that you typed in by hand (this example is from the help file for read.table).

```
read.table(header=TRUE, text="
a b
12
34
")
a b
1 1 2
2 3 4
```


## Reading data from the clipboard

A very quick way to read a dataset from Excel is to use your clipboard. In Excel, select the data you want to read (including the header names), and press Ctrl-C (Windows), or Cmd-C (Mac). Then, in $\mathbf{R}$, type:

```
for Windows:
mydata <- read.delim("clipboard", header=TRUE)
or for Mac:
mydata <- read.delim(pipe("pbpaste"), header=TRUE)
```

This is not a long-term solution to reading data, but is a very quick way to read (part of) a messy spreadsheet that someone shared with you.

## Other foreign formats

Finally, if you have a dataset in some unusual format, consider the foreign package, which provides a number of tools to read in other formats (such as SAS, SPSS, etc.).

## Convert vectors into a dataframe

Suppose you have two or more vectors (of the same length), and you want to include these in a new dataframe. You can use the function data.frame. Here is a simple example:

```
vec1 <- c(9,10,1,2,45)
vec2 <- 1:5
data.frame(x=vec1, y=vec2)
x y
1 9 1
2 10 2
3 1 3
4 2 4
5 45 5
```

Here, we made a dataframe with columns named x and y . Note: take care to ensure that the vectors have the same length, otherwise it won't work!

Try this yourself Modify the previous example so that the two vectors are not the same length. Then, attempt to combine them in a dataframe and inspect the resulting error message.

### 2.2 Working with dataframes

This book focuses heavily on dataframes, because this is the object you will use most of the time in data analysis. The following sections provide a brief introduction, but we will see many examples using dataframes throughout this manual.

### 2.2.1 Variables in the dataframe

Let's first read the allom data, if you have not done so already.

```
allom <- read.csv("Allometry.csv")
```

After reading the dataframe, it is good practice to always quickly inspect the dataframe to see if anything went wrong. I routinely look at the first few rows with head. Then, to check the types of variables in the dataframe, use the str function (short for 'structure'). This function is useful for other objects as well, to view in detail what the object contains.

```
head(allom)
species diameter height leafarea branchmass
1 PSME 54.61 27.04 338.485622 410.24638
2 PSME 34.80 27.42 122.157864 83.65030
3 PSME 24.89 21.23 3.958274 3.51270
4 PSME 28.70 24.96 86.350653 73.13027
5 PSME 34.80 29.99 63.350906 62.39044
6 PSME 37.85 28.07 61.372765 53.86594
str(allom)
'data.frame': 63 obs. of 5 variables:
$ species : Factor w/ 3 levels "PIMO","PIPO",..: 3 3 3 3 3 3 3 3 3 3 ...
$ diameter : num 54.6 34.8 24.9 28.7 34.8 ...
$ height : num 27 27.4 21.2 25 30 ...
$ leafarea : num 338.49 122.16 3.96 86.35 63.35 ...
$ branchmass: num 410.25 83.65 3.51 73.13 62.39 ...
```

Individual variables in a dataframe can be extracted using the dollar \$ sign. Let's print all the tree diameters here, after rounding to one decimal point:

```
round(allom$diameter,1)
[1] 54.6 34.8 24.9 28.7 34.8 37.9 22.6 39.4 39.9 26.2 43.7 69.8 44.5 56.6
[15] 54.6 5.3.3 6.1 7.4.4 8.3 13.5 51.3 22.4 69.6 58.4 33.3 44.2 30.5 27.4
[29] 43.2 38.9 52.6 20.8 24.1 24.9 46.0 35.0 23.9 60.2 12.4 4.8 70.6 11.4
[43] 11.9 60.2 60.7 70.6 57.7 43.1 18.3 43.4 18.5 12.9 37.9 26.9 38.6 6.5
[57] 31.8 73.7 28.2 61.5 51.6 18.3 8.4
```

It is also straightforward to add new variables to a dataframe. Let's convert the tree diameter to inches, and add it to the dataframe as a new variable:

```
allom$diameterInch <- allom$diameter / 2.54
```

Instead of using the $\$$-notation every time (which can result in lengthy, messy code, especially when your variable names are long) you can use with to indicate where the variables are stored. Let's add a new variable called volindex, a volume index defined as the square of tree diameter times height:

```
allom$volindex <- with(allom, diameter^2 * height)
```

For comparison, here is the same code using the $\$$-notation. Note that the previous example is probably easier to read.

```
allom$volindex <- allom$diameter^2 * allom$height
```

The with function allows for more readable code, while at the same time making sure that the variables diameter and height are read from the dataframe allom.

Try this yourself The above examples are important - many times throughout this book you will be required to perform similar operations. As an exercise, also add the ratio of height to diameter to the dataframe.

After adding new variables, it is good practice to look at the result, either by printing the entire dataframe, or only the first few rows:

head(allom)							
\#\#	species	diameter	height	leafarea	branchmass	diameterInch volindex	
\#\# 1	PSME	54.61	27.04	338.485622	410.24638	21.500000	80640.10
\#\# 2	PSME	34.80	27.42	122.157864	83.65030	13.700787	33206.72
\#\# 3	PSME	24.89	21.23	3.958274	3.51270	9.799213	13152.24
\#\# 4	PSME	28.70	24.96	86.350653	73.13027	11.299213	20559.30
\#\# 5	PSME	34.80	29.99	63.350906	62.39044	13.700787	36319.09
\#\# 6	PSME	37.85	28.07	61.372765	53.86594	14.901575	40213.71

A simple summary of the dataframe can be printed with the summary function:

```
summary(allom)
```



```
1st Qu.: 16.878 1st Qu.: 8.500 1st Qu.: 9906.35
Median : 72.029 Median :13.701 Median : 34889.47
Mean : 145.011 Mean :13.999 Mean : 55269.08
3rd Qu.: 162.750 3rd Qu.:20.250 3rd Qu.: 84154.77
Max. :1182.422 Max. :29.000 Max. :242207.52
```

For the numeric variables, the minimum, 1st quantile, median, mean, 3 rd quantile, and maximum values are printed. For so-called 'factor' variables (i.e., categorical variables), a simple table is printed (in this case, for the species variable). We will come back to factors in Section 3.2. If the variables have missing values, the number of missing values is printed as well (see Section 3.4).

To see how many rows and columns your dataframe contains (handy for double-checking you read the data correctly),

```
nrow(allom)
[1] 63
ncol(allom)
[1] 7
```


### 2.2.2 Changing column names in dataframes

To access the names of a dataframe as a vector, use the names function. You can also use this to change the names. Consider this example:

```
read names:
names(allom)
[1] "species" "diameter" "height" "leafarea" "branchmass"
rename all (make sure vector is same length as number of columns!)
names(allom) <- c("spec","diam","ht","leafarea","branchm")
```

We can also change some of the names, using simple indexing (see Section 2.3.1)

```
rename Second one to 'Diam'
names(allom)[2] <- "Diam"
rename 1st and 2nd:
names(allom)[1:2] <- c("SP","D")
```


### 2.3 Extracting data from vectors and dataframes

### 2.3.1 Vectors

Let's look at reordering or taking subsets of a vector, or indexing as it is commonly called. This is an important skill to learn, so we will look at several examples.

Let's recall the our last two numeric vectors:

```
nums1 <- c(1,4,2,8,11,100,8)
nums2 <- c(3.3,8.1,2.5,9.8,21.2,13.8,0.9)
```

Individual elements of a vector can be extracted using square brackets, [ ]. For example, to extract the first and then the fifth element of a vector:

```
nums1[1]
[1] 1
nums1[5]
[1] 11
```

You can also use another object to do the indexing, as long as it contains a integer number. For example,

```
Get last element:
nelements <- length(nums1)
nums1[nelements]
[1] 8
```

This last example extracts the last element of a vector. To do this, we first found the length of the vector, and used that to index the vector to extract the last element.

We can also select multiple elements, by indexing the vector with another vector. Recall how to construct sequences of numbers, explained in Section 1.6.1.

```
Select the first 3:
nums1[1:3]
[1] 1 4 2
Select a few elements of a vector:
selectthese <- c(1,5,2)
nums1[selectthese]
[1] 1 11 4
Select every other element:
everyother <- seq(1,7,by=2)
nums1[everyother]
[1] 1 2 11 8
Select five random elements:
ranels <- sample(1:length(nums2), 5)
nums2[ranels]
[1] 2.5 9.8
Remove the first element:
nums1[-1]
[1] 4 4
Remove the first and last element:
nums1[-c(1, length(nums1))]
[1] 4 4 2 8 8 11 100
```

Next, we can look at selecting elements of a vector based on the values in that vector. Suppose we want to make a new vector, based on vector nums 2 but only where the value within certain bounds. We can use simple logical statements to index a vector.

```
Subset of nums2, where value is at least 10 :
nums2[nums2 > 10]
```

```
[1] 21.2 13.8
Subset of nums2, where value is between 5 and 10:
nums2[nums2 > 5 & nums2 < 10]
[1] 8.1 9.8
Subset of nums2, where value is smaller than 1, or larger than 20:
nums2[nums2 < 1 | nums2 > 20]
[1] 21.2 0.9
Subset of nums1, where value is exactly 8:
nums1[nums1 == 8]
[1] 8 8
Subset nums1 where number is NOT equal to 100
nums1[nums1 != 100]
[1] 1 1 4 4
Subset of nums1, where value is one of 1,4 or 11:
nums1[nums1 %in% c(1,4,11)]
[1] 1 4 11
Subset of nums1, where value is NOT 1,4 or 11:
nums1[!(nums1 %in% c(1,4,11))]
[1] 2 8 100 8
```

These examples showed you several new logical operators. These operators are summarized in Table 2.1. See the help page ?Logic for more details on logical operators. If any are unclear, don't worry. We will return to logical data in Section 3.3.

Table 2.1: Logical operators.

Operator	Meaning
$>$	greater than
$<$	less than
$\&$	AND
$==$	equal to
!	OR
$\%$ in $\%$	is an element of
$!$	NOT

## Assigning new values to subsets

All of this becomes very useful if we realize that new values can be easily assigned to subsets. This works for any of the examples above. For instance,

```
Where nums1 was 100, make it -100
nums1[nums1 == 100] <- -100
Where nums2 was less than 5, make it zero
nums2[nums2 < 5] <- 0
```

Try this yourself Using the first set of examples in this section, practice assigning new values to subsets of vectors.

### 2.3.2 Subsetting dataframes

There are two ways to take a subset of a dataframe: using the square bracket notation ([]) as in the above examples, or using the subset function. We will learn both, as they are both useful from time to time.

Dataframes can be indexed with row and column numbers, like this:
mydataframe [row, column]
Here, row refers to the row number (which can be a vector of any length), and column to the column number (which can also be a vector). You can also refer to the column by its name rather than its number, which can be very useful. All this will become clearer after some examples.
Let's look at a few examples using the Allometry dataset (see Section A. 1 for a description of the dataset).

```
Read data
allom <- read.csv("allometry.csv")
Recall the names of the variables, the number of columns, and number of rows:
names(allom)
[1] "species" "diameter" "height" "leafarea" "branchmass"
nrow(allom)
[1] 63
ncol(allom)
[1] 5
Extract tree diameters: take the 4th observation of the 2nd variable:
allom[4,2]
[1] 28.7
We can also index the dataframe by its variable name:
allom[4,"diameter"]
[1] 28.7
Extract the first 3 rows of 'height':
allom[1:3, "height"]
[1] 27.04 27.42 21.23
Extract the first 5 rows, of ALL variables
Note the use of the comma followed by nothing
This means 'every column' and is very useful!
allom[1:5,]
\begin{tabular}{lrrrrr}
\#\# & \multicolumn{2}{c}{ species diameter } & height & leafarea & branchmass \\
\#\# 1 & PSME & 54.61 & 27.04 & 338.485622 & 410.24638 \\
\#\# 2 & PSME & 34.80 & 27.42 & 122.157864 & 83.65030 \\
\#\# 3 & PSME & 24.89 & 21.23 & 3.958274 & 3.51270 \\
\#\# 4 & PSME & 28.70 & 24.96 & 86.350653 & 73.13027
\end{tabular}
```

```
5 PSME 34.80 29.99 63.350906 62.39044
Extract the fourth column
Here we use nothing, followed by a comma,
to indicate 'every row'
allom[,4]
```

```
[1] 338.485622 122.157864 3.958274 86.350653 63.350906 61.372765
[7] 32.077794 147.270523 141.787332 45.020041 145.809802 349.057010
[13] 176.029213 319.507115 234.368784 4.851567 7.595163 11.502851
[19] 25.380647 65.698749 160.839174 31.780702 189.733007 253.308265
[25] 91.538428 90.453658 99.736790
[31] 160.993131 9.806496 20.743280 21.649603 66.633675 54.267994
[37] 19.844680 131.727303 22.365837 2.636336 411.160376 15.476022
[43] 14.493428 169.053644 139.651156 376.308256 417.209436 103.672633
[49] 33.713580 116.154916 44.934469 18.855867 154.078625 70.602797
[55] 169.163842 7.650902 93.072006 277.494360 131.856837 121.428976
[61] 212.443589 82.093031 6.551044
```

\# Select only 'height' and 'diameter', store in new dataframe:
allomhd <- allom[,c("height", "diameter")]

As we saw when working with vectors (see Section 2.3.1), we can use expressions to extract data. Because each column in a dataframe is a vector, we can apply the same techniques to dataframes, as in the following examples.

We can also use one vector in a dataframe to find subsets of another. For example, what if we want to find the value of one vector, if another vector has a particular value?

```
Extract diameters larger than 60
allom$diameter[allom$diameter > 60]
[1] 69.85 69.60 60.20 70.61 60.20 60.71 70.61 73.66 61.47
Extract all rows of allom where diameter is larger than 60.
Make sure you understand the difference with the above example!
allom[allom$diameter > 60,]
species diameter height leafarea branchmass
12 PSME 69.85 31.35 349.0570 543.9731
23 PIPO 69.60 39.37 189.7330 452.4246
38 PIPO 60.20 31.73 131.7273 408.3383
41 PIPO 70.61 31.93 411.1604 1182.4222
44 PIPO 60.20 35.14 169.0536 658.2397
45 PIMO 60.71 39.84 139.6512 139.2559
46 PIMO 70.61 40.66 376.3083 541.3062
58 PIMO 73.66 44.64 277.4944 275.7165
We can use one vector to index another. For example, find the height of the tree
that has the largest diameter, we can do:
allom$height[which.max(allom$diameter)]
[1] 44.64
Recalling the previous section, this is identical to:
allom[which.max(allom$diameter), "height"]
[1] 44.64
```

```
Get 10 random observations of 'leafarea'. Here, we make a new vector
on the fly with sample(), which we use to index the dataframe.
allom[sample(1:nrow(allom),10),"leafarea"]
\begin{tabular}{rrrrrrrr}
\#\# & {\([1]\)} & 147.27052 & 22.36584 & 14.49343 & 131.72730 & 154.07862 & 68.15031 \\
\#\# & {\([8]\)} & 25.38065 & 169.16384 & 411.16038 & & & \\
\hline
\end{tabular}
As we did with vectors, we can also use %in% to select a subset.
This example selects only two species in the dataframe.
allom[allom$species %in% c("PIMO","PIPO"),]
species diameter height leafarea branchmass
23 PIPO 69.60 39.369999 189.733007 452.42455
24 PIPO 58.42 35.810000 253.308265 595.64015
25 PIPO 33.27 20.800001 91.538428 160.44416
26 PIPO 44.20 29.110001 90.453658 149.72883
27 PIPO 30.48 22.399999 99.736790 44.13532
28 PIPO 27.43 27.690001 34.464685 22.98360
29 PIPO 43.18 35.580000 68.150309 106.40410
30 PIPO 38.86 33.120001 46.326060 58.24071
Extract tree diameters for the PIMO species, as long as diameter > 50
allom$diameter[allom$species == "PIMO" & allom$diameter > 50]
[1] 60.71 70.61 57.66 73.66 61.47 51.56
(not all output shown)
```

Try this yourself As with vectors, we can quickly assign new values to subsets of data using the <- operator. Try this on some of the examples above.

## Using subset()

While the above method to index dataframes is very flexible and concise, sometimes it leads to code that is difficult to understand. It is also easy to make mistakes when you subset dataframes by the column or row number (imagine the situation where the dataset has changed and you redo the analysis). Consider the subset function as a convenient and safe alternative.

With the subset function, you can select rows that meet a certain criterion, and columns as well. This example uses the pupae data, see Section A.6.

```
Read data
pupae <- read.csv("pupae.csv")
Take subset of pupae, ambient temperature treatment and CO2 is 280.
subset(pupae, T_treatment == "ambient" & CO2_treatment == 280)
\begin{tabular}{lrrrrr}
\#\# & T_treatment & CO2_treatment & Gender & PupalWeight & Frass \\
\#\# 1 & ambient & 280 & 0 & 0.244 & 1.900 \\
\#\# 2 & ambient & 280 & 1 & 0.319 & 2.770 \\
\#\# 3 & ambient & 280 & 0 & 0.221 & NA \\
\#\# 4 & ambient & 280 & 0 & 0.280 & 1.996 \\
\#\# 5 & ambient & 280 & 0 & 0.257 & 1.069
\end{tabular}
```

```
(not all output shown)
Take subset where Frass is larger than 2.9.
Also, keep only variables 'PupalWeight' and 'Frass'.
Note that you don't quote the column names when using 'subset'.
subset(pupae, Frass > 2.6, select=c(PupalWeight,Frass))
```

\#\#	PupalWeight	Frass
\#\# 2	0.319	2.770
\#\# 18	0.384	2.672
\#\# 20	0.385	2.603
\#\# 25	0.405	3.117
\#\# 29	0.473	2.631

Let's look at another example, using the cereal data (see Section A.7). Here, we use \%in\%, which we already saw in Section 2.3.1.

```
Read data
cereal <- read.csv("cereals.csv")
What are the Manufacturers in this dataset?
levels(cereal$Manufacturer)
[1] "A" "G" "K" "N" "P" "Q" "R"
Take a subset of the data with only 'A', 'N' and 'Q' manufacturers,
keep only 'Cereal.name' and 'calories'.
cerealsubs <- subset(cereal, Manufacturer %in% c("A","N","Q"), select=c(Cereal.name,calories))
cerealsubs
Cereal.name calories
1 100%_Bran 70
2 100%_Natural_Bran 120
11 Cap'n'Crunch 120
21 Cream_of_Wheat_(Quick) 100
36 Honey_Graham_Ohs 120
42 Life 100
44 Maypo 100
55 Puffed_Rice 50
56 Puffed_Wheat 50
57 Quaker_Oat_Squares 100
58 Quaker_Oatmeal 100
64 Shredded_Wheat 80
65 Shredded_Wheat_'n'Bran 90
##66 Shredded_Wheat_spoon_size 90
69 Strawberry_Fruit_Wheats 90
```

Another example using subset is provided in Section 3.2.
Try this yourself You can also delete a single variable from a dataframe using the select argument in the subset function. Look at the second in ?subset to see how, and try this out with the cereal data we used in the above examples.

### 2.3.3 Difference between [] and subset ()

We have seen two methods for indexing dataframes. Usually, both the square brackets and subset behave in the same way, except when only one variable is selected.
In that case, indexing with [] returns a vector, and subset returns a dataframe with one column. Like this,

```
A short dataframe
dfr <- data.frame(a=-5:0, b=10:15)
Select one column, with subscripting or subset.
dfr[,"a"]
[1] [-5 -4 4
subset(dfr, select=a)
a
1 -5
2 -4
3 -3
4 -2
5 -1
6 0
```

In some cases, a vector might be preferred. In other cases, a dataframe. The behaviour of the two methods also differs when there are missing values in the vector. We will return to this point in Section 3.4.3.

### 2.3.4 Deleting columns from a dataframe

It is rarely necessary to delete columns from a dataframe, unless you want to save a copy of the dataframe to disk (see Section ). Instead of deleting columns, you can take a subset and make a new dataframe to continue with. Also, it should not be necessary to delete columns from the dataframe that you have accidentally created in a reproducible script: when things go wrong, simply clear the workspace and run the entire script again.
That aside, you have the following options to delete a column from a dataframe.

```
A simple example dataframe
dfr <- data.frame(a=-5:0, b=10:15)
Delete the second column (make a new dataframe 'dfr2' that does not include that column)
dfr2 <- dfr[,-2]
Use subset to remove a column
Note: this does not work using square-bracket notation!
dfr2 <- subset(dfr, select = -b)
Finally, this strange command deletes a column as well.
In this case, we really delete the column from the existing dataframe,
whereas the two examples above create a new subset *without* that column.
dfr$b <- NULL
```


### 2.4 Exporting data

To write a dataframe to a comma-separated values (CSV) file, use the write. csv function. For example,

```
Some data
dfr <- data.frame(x=1:3, y=2:4)
Write to disk (row names are generally not wanted in the CSV file).
write.csv(dfr,"somedata.csv", row.names=FALSE)
```

If you want more options, or a different delimiter (such as TAB), look at the write. table function.

### 2.5 Functions used in this chapter

For functions not listed here, please refer to the index at the end of this book.

Function	What it does	Example use	
!	A logical operator meaning NOT. NOT returns the opposite of other functions it is used with. Compare to other examples in this table. Returns TRUE or FALSE.	$\begin{aligned} & 1 \text { ! = } 2 \\ & \text { "a" !\%in\% LETTERS } \end{aligned}$	
==	A logical operator meaning equal to. Returns TRUE or FALSE.	$\begin{aligned} & 1==2 \\ & \text { letters }[1]==~ " \mathrm{a} " \end{aligned}$	
\$	An operator that allows you to extract or change a single variables from a dataframe. The result can be treated like a vector.	mtcars\$wt   mtcars\$kg <- mtcars\$wt*454	
\%in\%	A logical operator that asks whether its first arguments is an element of its second argument. Returns TRUE or FALSE.	"a" \%in\% letters   "a" \%in\% LETTERS	
\&	A logical operator meaning AND. Returns TRUE or FALSE.	TRUE \& TRUE $(100>10) \&(10>100)$	
1	A logical operator meaning OR. Returns TRUE or FALSE.	```FALSE \| FALSE (100 > 10)	(10 > 100)```
>	A logical operator meaning greater than. Returns TRUE or FALSE.	$\begin{aligned} & 10>100 \\ & 100>10 \end{aligned}$	
<	A logical operator meaning less than. Returns TRUE or FALSE.	$\begin{aligned} & 10<100 \\ & 100<10 \end{aligned}$	
any	Given a vector of logical values, returns a single logical value. TRUE if there is at least one TRUE value, FALSE if there is not.	```any(c(TRUE, FALSE, FALSE, FALSE) any(letters == "?")```	
data.frame	Creates dataframes, one of the most convenient ways to store data in R. Data frames have columns, each of which represents a different variable, and rows, each of which represents a different observation of that variable. While each colummn must contain only a single data type, different columns can contain different data types.	$\begin{aligned} \text { dfr } & <- \text { data.frame } \\ & a=-5: 0, b=10: 15) \end{aligned}$	
duplicated	Given a vector, returns a vector of logical values indicating which elements appear more than once.	duplicated(c(1, 1, 2, 3, 4, 4))	
head	Shows the first rows of a dataframe. By default, shows the first six rows.	head (mtcars)   head(mtcars, $\mathrm{n}=10$ )	
LETTERS,   letters	Not really functions, but vectors of the uppercase and lowercase English alphabet, always loaded and ready to use.	LETTERS   letters	


Function	What it does	Example use
ls	Gives the names of all the objects currently in working memory.	ls()
names	Allows you to view or change the names of columns in a dataframe.	```names (BOD) names(BOD) <- c("T","D")```
ncol	Gives the number of columns in a dataframe.	ncol (mtcars)
nrow	Gives the number of rows in a dataframe.	nrow (mtcars)
order	Can be used to find the sort order for a single column of a dataframe. By default, sorts in increasing order, but can be set to sort in decreasing order.	```order(mtcars$wt) order(mtcars$wt, decreasing = TRUE)```
read.csv	Reads data from comma-separated variable (CSV) files. Important arguments include the file name (or complete file path) and whether or not the file has a header. For more details, see Section 2.1.1.	```read.csv("Allometry.csv") read.csv("Allometry.csv", header=TRUE)```
read.table	A flexible function for reading data with different separating characters. To use read.table, you need to the character used to separate the data (sep) and whether or not the file has a header row (header). There are also many other options you can set to customize this function; for more see ?read.table.	```read.table("tab.txt", header=TRUE) read.table("semi.txt", sep=";",header=TRUE)```
rm	Can be used to remove objects from the current workspace. To remove all objects, give ls() as the first argument.	$\begin{aligned} & \text { rm(x) } \\ & \text { rm(list=ls()) } \end{aligned}$
str	Gives the structure of an object. Very useful for finding out what data types an object contains.	str (warpbreaks)
subset	Allows the selection of part of a dataframe, using logical operators to define which rows or columns should be included.	```subset(mtcars, wt > 3) subset(mtcars, wt > 3 & hp < 100)```
summary	Provides a simple summary of the variables in a dataframe. Statistical information is given for numerical variables, and a list of counts is given for factor variables.	summary (warpbreaks)
which.max	For a single variable from a dataframe, gives the position of the largest value.	which.max(mtcars\$wt)
which.min	For a single variable from a dataframe, gives the position of the smallest value.	which.min(mtcars\$wt)
with	Can be used to extract certain variables from a dataframe. A useful alternative to $\$$, particularly when doing math involving multiple variables.	with(mtcars, mpg/wt)
write.csv	Can be used to output a dataframe as a CSV file. This is a file in which values are separated by commas, and which can be read by Excel and other programs. You must provide a dataframe and a file name. Output will be written to your working directory.	```write.csv(mtcars, file="Motor_cars.csv")```


Function	What it does	Example use
write.table	Similar to write.csv, but can be used to write files   with other separating characters, such as tabs or   semicolons. You must provide a dataframe and a file   name. Output will be written to your working direc-   tory.	file="Motor_cars.txt"   nep=";")

### 2.6 Exercises

In these exercises, we use the following colour codes:
■ Easy: make sure you complete some of these before moving on. These exercises will follow examples in the text very closely.

- Intermediate: a bit harder. You will often have to combine functions to solve the exercise in two steps.
- Hard: difficult exercises! These exercises will require multiple steps, and significant departure from examples in the text.

We suggest you complete these exercises in an $\mathbf{R}$ markdown file. This will allow you to combine code chunks, graphical output, and written answers in a single, easy-to-read file.

### 2.6.1 Working with a single vector 2

Recall Exercise 1.15 .3 on p. 31. Read in the rainfall data once more. We now practice subsetting a vector (see Section 2.3.1, p. 40).

1. $\quad$ Take a subset of the rainfall data where rain is larger than 20.
2. $\quad$ What is the mean rainfall for days where the rainfall was at least 4 ?
3. $\quad$ Subset the vector where it is either exactly zero, or exactly o.6.

### 2.6.2 Alphabet aerobics 2

The 26 letters of the Roman alphabet are conveniently accessible in R via letters and LETTERS. These are not functions, but vectors that are always loaded.

1. $■$ What is the 18 th letter of the alphabet?
2. $\quad$ What is the last letter of the alphabet (don't guess, write code)?
3. Use ?sample to figure out how to sample with replacement. Generate a random subset of fifteen letters. Are any letters in the subset duplicated? Hint: use the any and duplicated functions. Which letters?

### 2.6.3 Basic operations with the Cereal data

For this exercise, we will use the Cereal data, see Section A. 7 (p.245) for a description of the dataset.

1. $\quad$ Read in the dataset, look at the first few rows with head and inspect the data types of the variables in the dataframe with str.
2. $\square$ Add a new variable to the dataset called 'totalcarb', which is the sum of 'carbo' and 'sugars'. Recall Section 2.2 (p. 38).
3. How many cereals in the dataframe are 'hot' cereals? Hint: take an appropriate subset of the data, and then count the number of observations in the subset.
4. How many unique manufacturers are included in the dataset? Hint: use length and unique.
5. $\quad$ Take a subset of the dataframe with only the Manufacturer 'K' (Kellogg's).
6. Take a subset of the dataframe of all cereals that have less than 80 calories, AND have more than 20 units of vitamins.
7.     - Take a subset of the dataframe containing cereals that contain at least 1 unit of sugar, and keep only the variables 'Cereal.name', 'calories' and 'vitamins'. Then inspect the first few rows of the dataframe with head.
8. $■$ For one of the above subsets, write a new CSV file to disk using write.csv (see Section 2.4 on p. 48).
9. $■$ Rename the column 'Manufacturer' to 'Producer' (see Section 2.2.2, p. 40).

### 2.6.4 A short dataset

1. $\square$ Read the following data into $\mathbf{R}$ (number of honeyeaters seen at the EucFACE site seen in a week). Give the resulting dataframe a reasonable name. Hint:To read this dataset, look at Section 2.1.2 (p. 36) (there are at least two ways to read this dataset, or you can type it into Excel and save as a CSV file if you prefer).
Day nrbirds
sunday 3
monday 2
tuesday 5
wednesday 0
thursday 8
friday 1
saturday 2
2. $■$ Add a day number to the dataset you read in above (sunday=1, saturday=7). Recall the seq function (Section 1.6.1, p. 18).
3. ■ Delete the 'Day' variable (to only keep the daynumber that you added above).
4. On which daynumber did you observe the most honeyeaters? Hint: use which.max, in combination with indexing.
5. Sort the dataset by number of birds seen. Hint: use the order function to find the order of the number of birds, then use this vector to index the dataframe.

### 2.6.5 Titanic

1. $\square$ Read the data described in Section A. 12 (p. 247)
2. ■ Make two new dataframes : a subset of male survivors, and a subset of female survivors. Recall Section 2.3.2 (p. 43) (you can use either the square brackets, or subset to make the subsets).
3. Based on the previous question, what was the name of the oldest surviving male? In what class was the youngest surviving female? Hint: use which.max, which.min on the subsets you just created.
4. $\Delta$ Take 15 random names of passengers from the Titanic, and sort them alphabetically. Hint: use sort.

### 2.6.6 Managing your workspace

Before you start this exercise, first make sure you have a reproducible script.

1. $\quad$ You should now have a cluttered workspace. Generate a vector that contains the names of all objects in the workspace.
2. Generate a vector that contains the names of all objects in the workspace, with the exception of titanic. Hint: use the ls function.
3. Look at the help page for rm. Use the list argument to delete all objects from the workspace except for titanic. Use the ls function to confirm that your code worked.

## Chapter 3

## Special data types

### 3.1 Types of data

For the purpose of this tutorial, a dataframe can contain six types of data. These are summarized in the table below:

Data type	Description	Example	Section
numeric	Any number	$\mathrm{c}(1,12.3491,10 / 2,10 * 6)$	
character	Character strings	$\mathrm{c}($ "E. saligna", "HFE", "a b c")	3.5
factor	Categorical variable	factor(c("Control","Fertilized", "Irrigated"))	3.2
logical	Either TRUE or FALSE	$10==100 / 10$	3.3
Date	Special Date class	as.Date("2010-6-21")	3.6 .1
POSIXct	Special Date-time class	Sys.time()	3.6 .2

Also, $\mathbf{R}$ has a very useful built-in data type to represent missing values. This is represented by NA (Not Available) (see Section 3.4).
We will show how to convert between data types at the end of this chapter (Section 3.7).

### 3.2 Working with factors

The factor data type is used to represent qualitative, categorical data.
When reading data from file, for example with read.csv, $\mathbf{R}$ will automatically convert any variable to a factor if it is unable to convert it to a numeric variable. If a variable is actually numeric, but you want to treat it as a factor, you can use as.factor to convert it, as in the following example.

```
Read pupae data
pupae <- read.csv("pupae.csv")
This dataset contains a temperature (T_treatment) and CO2 treatment (CO2_treatment).
Both should logically be factors, however, CO2_treatment is read as numeric:
str(pupae)
```

```
'data.frame': 84 obs. of 5 variables:
```


## 'data.frame': 84 obs. of 5 variables:

## \$ T_treatment : Factor w/ 2 levels "ambient","elevated": 1 1 1 1 1 1 1 1 1 1 ...

## \$ T_treatment : Factor w/ 2 levels "ambient","elevated": 1 1 1 1 1 1 1 1 1 1 ...

## \$ CO2_treatment: int 280 280 280 280 280 280 280 280 280 280 ...

## \$ CO2_treatment: int 280 280 280 280 280 280 280 280 280 280 ...

## \$ Gender : int 01 0 0 0 1 0 1 0 1 ···..

```
$ Gender : int 01 0 0 0 1 0 1 0 1 \ldots..
```

```
$ PupalWeight : num 0.244 0.319 0.221 0.28 0.257 0.333 0.275 0.312 0.254 0.356 \ldots..
$ Frass : num 1.9 2.77 NA 2 1.07 ...
To convert it to a factor, we use:
pupae$CO2_treatment <- as.factor(pupae$CO2_treatment)
Compare with the above,
str(pupae)
'data.frame': 84 obs. of 5 variables:
$ T_treatment : Factor w/ 2 levels "ambient","elevated": 1 1 1 1 1 1 1 1 1 1 ...
$ CO2_treatment: Factor w/ 2 levels "280","400": 1 1 1 1 1 1 1 1 1 1 ...
$ Gender : int 0 1 0 0 0 1 0 1 0 1 ...
$ PupalWeight : num 0.244 0.319 0.221 0.28 0.257 0.333 0.275 0.312 0.254 0.356 ...
$ Frass : num 1.9 2.77 NA 2 1.07 ...
```

In the allom example dataset, the species variable is a good example of a factor. A factor variable has a number of 'levels', which are the text values that the variable has in the dataset. Factors can also represent treatments of an experimental study. For example,

```
levels(allom$species)
[1] "PIMO" "PIPO" "PSME"
```

Shows the three species in this dataset. We can also count the number of rows in the dataframe for each species, like this:

```
table(allom$species)
##
PIMO PIPO PSME
19 22 22
```

Note that the three species are always shown in the order of the levels of the factor: when the dataframe was read, these levels were assigned based on alphabetical order. Often, this is not a very logical order, and you may want to rearrange the levels to get more meaningful results.

In our example, let's shuffle the levels around, using factor.

```
allom$species <- factor(allom$species, levels=c("PSME","PIMO","PIPO"))
```

Now revisit the commands above, and note that the results are the same, but the order of the levels of the factor is different. You can also reorder the levels of a factor by the values of another variable, see the example in Section 6.2.5.

We can also generate new factors, and add them to the dataframe. This is a common application:

```
Add a new variable to allom: 'small' when diameter is less than 10, 'large' otherwise.
allom$treeSizeClass <- factor(ifelse(allom$diameter < 10, "small", "large"))
Now, look how many trees fall in each class.
Note that somewhat confusingly, 'large' is printed before 'small'.
Once again, this is because the order of the factor levels is alphabetical by default.
table(allom$treeSizeClass)
##
large small
56 7
```

What if we want to add a new factor based on a numeric variable with more than two levels? In that case, we cannot use ifelse. We must find a different method. Look at this example using cut.

```
The cut function takes a numeric vectors and cuts it into a categorical variable.
Continuing the example above, let's make 'small','medium' and 'large' tree size classes:
allom$treeSizeClass <- cut(allom$diameter, breaks=c(0,25,50,75),
 labels=c("small", "medium", "large"))
And the results,
table(allom$treeSizeClass)
##
small medium large
22 24 17
```


## Empty factor levels

It is important to understand how factors are used in $\mathbf{R}$ : they are not simply text variables, or 'character strings'. Each unique value of a factor variable is assigned a level, which is used every time you summarize your data by the factor variable.
Crucially, even when you delete data, the original factor level is still present. Although this behaviour might seem strange, it makes a lot of sense in many cases (zero observations for a particular factor level can be quite informative, for example species presence/absence data).

Sometimes it is more convenient to drop empty factor levels with the droplevels function. Consider this example:

```
Read the Pupae data:
pupae <- read.csv("pupae.csv")
Note that 'T_treatment' (temperature treatment) is a factor with two levels,
with 37 and 47 observations in total:
table(pupae$T_treatment)
##
ambient elevated
37 47
Suppose we decide to keep only the ambient treatment:
pupae_amb <- subset(pupae, T_treatment == "ambient")
Now, the level is still present, although empty:
table(pupae_amb$T_treatment)
##
ambient elevated
37 0
In this case, we don't want to keep the empty factor level.
Use droplevels to get rid of any empty levels:
pupae_amb2 <- droplevels(pupae_amb)
```

Try this yourself Compare the summary of pupae_amb and pupae_amb2, and note the differences.

### 3.2.1 Changing the levels of a factor

Sometimes you may want to change the levels of a factor, for example to replace abbreviations with more readable labels. To do this, we can assign new values with the levels function, as in the following example using the pupae data:

```
Change the levels of T_treatment by assigning a character vector to the levels.
levels(pupae$T_treatment) <- c("Ambient","Ambient + 3C")
Or only change the first level, using subscripting.
levels(pupae$T_treatment)[1] <- "Control"
```

Try this yourself Using the method above, you can also merge levels of a factor, simply by assigning the same new level to both old levels. Try this on a dataset of your choice (for example, in the allom data, you can assign new species levels, 'Douglas-fir' for PSME, and 'Pine' for both PIMO and PIPO). Then check the results with levels().

### 3.3 Working with logical data

Some data can only take two values: true, or false. For data like these, $\mathbf{R}$ has the logical data type. Logical data are coded by integer numbers ( $0=$ FALSE, $1=$ TRUE), but normally you don't see this, since R will only print TRUE and FALSE 'labels'. However, once you know this, some analyses become even easier. Let's look at some examples,

```
Answers to (in)equalities are always logical:
10>5
[1] TRUE
101 == 100 + 1
[1] TRUE
... or use objects for comparison:
apple <- 2
pear <- 3
apple == pear
[1] FALSE
NOT equal to.
apple != pear
[1] TRUE
Logical comparisons like these also work for vectors, for example:
nums <- c(10,21,5,6,0,1,12)
nums > 5
```

\#\# [1] TRUE TRUE FALSE TRUE FALSE FALSE TRUE
\# Find which of the numbers are larger than 5:
which (nums > 5)
\#\# [1] 1247
\# Other useful functions are 'any' and 'all':
\# Are any numbers larger than 25 ?

```
any(nums > 25)
[1] FALSE
Are all numbers less than or equal to 10?
all(nums <= 10)
[1] FALSE
Use & for AND, for example to take subsets where two conditions are met:
subset(pupae, PupalWeight > 0.4 & Frass > 3)
T_treatment CO2_treatment Gender PupalWeight Frass
25 ambient 400 1 0.405 3.117
Use | for OR
nums[nums < 2 | nums > 20]
[1] 21 0
How many numbers are larger than 5?
#- Short solution
sum(nums > 5)
[1] 4
#- Long solution
length(nums[nums > 5])
[1] 4
```

We saw a number of 'logical operators', like $==$ (is equal to), and $>$ (is greater than) when we indexed vectors (see Section 2.3 .1 and Table 2.1). The help page ?Syntax has a comprehensive list of operators in $\mathbf{R}$ (including the logical operators).

### 3.4 Working with missing values

### 3.4.1 Basics

In R, missing values are represented with NA, a special data type that indicates the data is simply Not Available.

Warning: Because NA represents a missing value, make sure you never use 'NA' as an abbreviation for anything (like North America).
Many functions can handle missing data, usually in different ways. For example, suppose we have the following vector:

```
myvec1 <- c(11,13,5,6,NA,9)
```

In order to calculate the mean, we might want to either exclude the missing value (and calculate the mean of the remaining five numbers), or we might want mean(myvec1) to fail (produce an error). This last case is useful if we don't expect missing values, and want $\mathbf{R}$ to only calculate the mean when there are no NA's in the dataset.

These two options are shown in this example:

```
Calculate mean: this fails if there are missing values
mean(myvec1)
```

```
[1] NA
Calculate mean after removing the missing values
mean(myvec1, na.rm=TRUE)
[1] 8.8
```

Many functions have an argument na.rm, or similar. Refer to the help page of the function to learn about the various options (if any) for dealing with missing values. For example, see the help pages ?lm and ?sd.

The function is.na returns TRUE when a value is missing, which can be useful to see which values are missing, or how many,

```
Is a value missing? (TRUE or FALSE)
is.na(myvec1)
[1] FALSE FALSE FALSE FALSE TRUE FALSE
Which of the elements of a vector is missing?
which(is.na(myvec1))
[1] 5
How many values in a vector are NA?
sum(is.na(myvec1))
[1] 1
```


## Making missing values

In many cases it is useful to change some bad data values to NA. We can use our indexing skills to do so,

```
Some vector that contains bad values coded as -9999
datavec <- c(2,-9999,100,3,-9999,5)
Assign NA to the values that were -9999
datavec[datavec == -9999] <- NA
```

In many cases, missing values may arise when certain operations did not produce the desired result. Consider this example,

```
A character vector, some of these look like numbers:
myvec <- c("101","289","12.3","abc","99")
Convert the vector to numeric:
as.numeric(myvec)
Warning: NAs introduced by coercion
[1] 101.0 289.0 12.3 NA 99.0
```

The warning message NAs introduced by coercion means that missing values were produced by when we tried to turn one data type (character) to another (numeric).

## Not A Number

Another type of missing value is the result of calculations that went wrong, for example:

```
Attempt to take the logarithm of a negative number:
log(-1)
Warning in log(-1): NaNs produced
[1] NaN
```

The result is NaN, short for Not A Number.
Dividing by zero is not usually meaningful, but $\mathbf{R}$ does not produce a missing value:

```
1000/0
[1] Inf
```

It produces 'Infinity' instead.

### 3.4.2 Missing values in dataframes

When working with dataframes, you often want to remove missing values for a particular analysis. We'll use the pupae dataset for the following examples. See Section A. 6 for a description of this dataset.

```
Read the data
pupae <- read.csv("pupae.csv")
Look at a summary to see if there are missing values:
summary(pupae)
\begin{tabular}{|c|c|c|c|c|}
\hline \#\# & T_treatment & C02_treatment & Gender & PupalWeight \\
\hline \#\# & ambient :37 & Min. \(: 280.0\) & Min. \(: 0.0000\) & Min. 00.1720 \\
\hline \#\# & elevated:47 & 1st Qu.:280.0 & 1st Qu.:0.0000 & 1st Qu.:0.2562 \\
\hline \#\# & & Median : 400.0 & Median :0.0000 & Median :0.2975 \\
\hline \#\# & & Mean : 344.3 & Mean :0.4487 & Mean :0.3110 \\
\hline \#\# & & 3rd Qu.:400.0 & 3rd Qu.:1.0000 & 3rd Qu.:0.3560 \\
\hline \#\# & & Max. : 400.0 & Max. \(: 1.0000\) & Max. :0.4730 \\
\hline \#\# & & & NA's : 6 & \\
\hline \#\# & Frass & & & \\
\hline \#\# & Min. 0.986 & & & \\
\hline \#\# & 1st Qu.:1.515 & & & \\
\hline \#\# & Median :1.818 & & & \\
\hline \#\# & Mean :1.846 & & & \\
\hline \#\# & 3rd Qu.:2.095 & & & \\
\hline \#\# & Max. \(: 3.117\) & & & \\
\hline \#\# & NA's : 1 & & & \\
\hline
\end{tabular}
Notice there are 6 NA's (missing values) for Gender, and 1 for Frass.
Option 1: take subset of data where Gender is not missing:
pupae_subs1 <- subset(pupae, !is.na(Gender))
Option 2: take subset of data where Frass AND Gender are not missing
pupae_subs2 <- subset(pupae, !is.na(Frass) & !is.na(Gender))
A more rigorous subset: remove all rows from a dataset where ANY variable
has a missing value:
pupae_nona <- pupae[complete.cases(pupae),]
```


### 3.4.3 Subsetting when there are missing values

When there are missing values in a vector, and you take a subset (for example all data larger than some value), should the missing values be included or dropped? There is no one answer to this, but it is important to know that subset drops them, but the square bracket method ([]) keeps them. See also Section 2.3.3, where we showed that these two methods to subset data differ in their behaviour.

Consider this example, and especially the use of which to drop missing values when subsetting.

```
A small dataframe
dfr <- data.frame(a=1:4, b=c(4,NA,6,NA))
subset drops all missing values
subset(dfr, b > 4, select=b)
b
3 6
square bracket notation keeps them
dfr[dfr$b > 4,"b"]
[1] NA 6 NA
... but drops them when we use 'which'
dfr[which(dfr$b > 4),"b"]
[1] 6
```


### 3.5 Working with text

### 3.5.1 Basics

Many datasets include variables that are text only (think of comments, species names, locations, sample codes, and so on), it is useful to learn how to modify, extract, and analyse text-based ('character') variables.
Consider the following simple examples when working with a single character string:

```
Count number of characters in a bit of text:
sentence <- "Not a very long sentence."
nchar(sentence)
[1] 25
Extract the first 3 characters:
substr(sentence, 1, 3)
[1] "Not"
```

It gets more interesting when we have character vectors, for example,

```
Substring all elements of a vector
substr(c("good","good riddance","good on ya"),1,4)
[1] "good" "good" "good"
Number of characters of all elements of a vector
nchar(c("hey","hi","how", "ya","doin"))
```

\#\# [1] 32324
To glue bits of text together, use the paste function, like so:

```
Add a suffix to each text element of a vector:
txt <- c("apple","pear","banana")
paste(txt, "-fruit")
[1] "apple -fruit" "pear -fruit" "banana -fruit"
Glue them all together into a single string using the collapse argument
paste(txt, collapse="-")
[1] "apple-pear-banana"
Combine numbers and text:
paste("Question", 1:3)
[1] "Question 1" "Question 2" "Question 3"
This can be of use to make new variables in a dataframe,
as in this example where we combine two factors to create a new one:
pupae$T_CO2 <- with(pupae, paste(T_treatment, CO2_treatment, sep="-"))
head(pupae$T_CO2)
[1] "ambient-280" "ambient-280" "ambient-280" "ambient-280" "ambient-280"
[6] "ambient-280"
```

Try this yourself Run the final example above, and inspect the variable T_C02 (with str) that we added to the dataframe. Make it into a factor variable using as.factor, and inspect the variable again.

### 3.5.2 Column names

Vectors, dataframes and list can all have names that can be used to find rows or columns in your data. We already saw how you can use column names to index a dataframe in Section 2.3.2. Also consider the following examples:

```
Change the names of a dataframe:
hydro <- read.csv("hydro.csv")
names(hydro) # first print the old names
[1] "Date" "storage"
names(hydro) <- c("Date","Dam_Storage") # then change the names
Change only the first name (you can index names() just like you can a vector!)
names(hydro) [1] <- "Datum"
```

Sometimes it is useful to find out which columns have particular names. We can use the match function to do this:

```
match(c("diameter","leafarea"), names(allom))
[1] 2 4
```

Shows that the 2nd and 4th column have those names.

### 3.5.3 Text in dataframes and grep

When you read in a dataset (with read.csv, read.table or similar), any variable that $\mathbf{R}$ cannot convert to numeric is automatically converted to a factor. This means that if a column has even just one value that is text (or some garble that does not represent a number), the column cannot be numeric.
While we know that factors are very useful, sometimes we want a variable to be treated like text. For example, if we plan to analyse text directly, or extract numbers or other information from bits of text. Let's look at a few examples using the cereal dataset, described in Section A.7.

```
Read data, tell R to treat the first variable ('Cereal.name') as character, not factor
cereal <- read.csv("cereals.csv", stringsAsFactors=FALSE)
Make sure that the Cereal name is really a character vector:
is.character(cereal$Cereal.name)
[1] TRUE
The above example avoids converting any variable to a factor,
what if we want to just convert one variable to character?
cereal <- read.csv("cereals.csv")
cereal$Cereal.name <- as.character(cereal$Cereal.name)
```

Here, the argument stringsAsFactors=FALSE avoided the automatic conversion of character variables to factors.

The following example uses grep, a very powerful function. This function can make use of regular expressions, a flexible tool for text processing.

```
Extract cereal names (for convenience).
cerealnames <- cereal$Cereal.name
Find the cereals that have 'Raisin' in them.
grep() returns the index of values that contain Raisin
grep("Raisin",cerealnames)
[1] 23 45 46 50 52 53 59 60 61 71
grepl() returns TRUE or FALSE
grepl("Raisin",cerealnames)
[1] FALSE FALSE
[12] FALSE FALSE
[23] TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[34] FALSE FALSE
[45] TRUE TRUE FALSE FALSE FALSE TRUE FALSE TRUE TRUE FALSE FALSE
[56] FALSE FALSE FALSE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE
[67] FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE
That result just gives you the indices of the vector that have 'Raisin' in them.
these are the corresponding names:
cerealnames[grep("Raisin", cerealnames)]
[1] "Crispy_Wheat_&_Raisins"
[2] "Muesli_Raisins,_Dates,_&_Almonds"
[3] "Muesli_Raisins,_Peaches,_&_Pecans"
[4] "Nutri-Grain_Almond-Raisin"
[5] "Oatmeal_Raisin_Crisp"
[6] "Post_Nat._Raisin_Bran"
```

```
[7] "Raisin_Bran"
[8] "Raisin_Nut_Bran"
[9] "Raisin_Squares"
[10] "Total_Raisin_Bran"
Now find the cereals whose name starts with Raisin.
The ~ symbol is part of a 'regular expression', it indicates 'starts with':
grep("^Raisin",cerealnames)
[1] 59 60 61
Or end with 'Bran'
The $ symbol is part of a 'regular expression', and indicates 'ends with':
grep("Bran$", cerealnames)
[1] 1 2 2 3 20 29 53 59 60 65 71
```

As mentioned, grep can do a lot of different things, so don't be alarmed if you find the help page a bit overwhelming. However, there are a few options worth knowing about. One very useful option is to turn off the case-sensitivity, for example:

```
grep("bran",cerealnames,ignore.case=TRUE)
```

```
[1] 1
```

```
[1] 1
```

finds Bran and bran and BRAN.
Finally, using the above tools, let's add a new variable to the cereal dataset that is TRUE when the name of the cereal ends in 'Bran', otherwise it is FALSE. For this example, the grepl function is more useful (because it returns TRUE and FALSE).

```
grepl will return FALSE when Bran is not found, TRUE otherwise
cereal$BranOrNot <- grepl("Bran$", cerealnames)
Quick summary:
summary(cereal$BranOrNot)
\begin{tabular}{lrrr}
\#\# & Mode & FALSE & TRUE \\
\#\# logical & 67 & 10
\end{tabular}
```

Regular expressions are very useful, and with the right knowledge, you can specify almost any possible text string. Below we've included a quick cheat sheet that shows some of the ways they can be used. For more examples and explanation, please see the Further Reading at the end of this section.

Table 3.1: A regular expression cheat sheet.

Symbol	What it means	Example	Matches	Doesn't match
^abc	Matches any string that starts   with $a b c$	^eco	economics,   ecology	evo-eco
$a b c \$$	Matches any string that ends   with $a b c$	ology		

Table 3.1: A regular expression cheat sheet.

Symbol	What it means	Example	Matches	Doesn't match
*	Matches a given string o or more times.	ab*a	aa, abba, abbba, abbbba	ba, ab
?	Matches a given string o times or 1 time - no more.	$a b ? a$	aa, aba	abba, abbbba
(abc)	Groups a string to be matched as part of an expression.	(4570)	$\begin{aligned} & 4570 \text { 1125, } \\ & 45701617 \end{aligned}$	$\begin{aligned} & 97726585, \\ & 97726100 \end{aligned}$
[abc]	Matches any of the characters inside the brackets.	$\mathrm{gr}[\mathrm{ae}] \mathrm{y}$	gray, grey	greey, graey
[^abc]	Matches any characters not inside the brackets.	b [^e]	bid, ban	bees, bed
-	Within brackets, gives a range of characters to be matched.	[a-c]t	at, bt, ct	$d t$, et
\{n\}	Used to give the number of times to match the preceding group.	ab\{2\}a	abba	aba, abbba
\1	Used to "escape" a special character so it can be matched as part of an expression. Note than in R, you must use a double $\backslash \backslash$.	why		
?	why?,   why ask why?	why not		
s	Matches any whitespace character.	day: $\backslash \backslash s[A-z]$	$\begin{aligned} & \text { day: monday, } \\ & \text { day: Fri } \end{aligned}$	day:Fri
w	Matches any whole word.	my		
w	my hobby, my name	his program		
$\backslash \backslash d$	Matches any digit.			
d years old	5 years old, 101.6 years old	six years old		

Further reading "Some people, when confronted with a problem, think'I know, l'll use regular expressions.' Now they have two problems." - Jamie Zawinski, comp.emacs.xemacs, 1997
If you would like to know more about how regular expressions work, you can start with the Wikipedia page http://en.wikipedia.org/wiki/Regular_expressions. Jan Goyvaerts (who seems to have dedicated his life to explaining regular expressions) has a helpful quick start guide at http://www.regular-expressions.info/quickstart.html. The same page also has a tutorial. Also worth a look is Robin Lovelace's introduction specifically for $\mathbf{R}$ and RStudio at https: //www.r-bloggers.com/regular-expressions-in-r-vs-rstudio/. Finally, a very useful and more detailed cheat sheet can be found at http://regexlib.com/CheatSheet.aspx.

### 3.6 Working with dates and times

Admittedly, working with dates and times in $\mathbf{R}$ is somewhat annoying at first. The built-in help files on this subject describe all aspects of this special data type, but do not offer much for the beginning $\mathbf{R}$ user. This section covers basic operations that you may need when analysing and formatting datasets.
For working with dates, we use the lubridate package, which simplifies it tremendously.

### 3.6.1 Reading dates

The built-in Date class in $\mathbf{R}$ is encoded as an integer number representing the number of days since 1-1-1970 (but this actual origin does not matter for the user). Converting a character string to a date with as.Date is straightforward if you use the standard order of dates: YYYY-MM-DD. So, for example,

```
as.Date("2008-5-22")
```

\#\# [1] "2008-05-22"

The output here is not interesting, $\mathbf{R}$ simply prints the date. Because dates are represented as numbers in $\mathbf{R}$, we can do basic arithmetic:

```
First load lubridate when working with dates or date-time combinations.
(although as.Date is part of the base package)
library(lubridate)
##
Attaching package: 'lubridate'
The following object is masked from 'package:base':
##
date
A date, 7 days later:
as.Date("2011-5-12") + 7
[1] "2011-05-19"
Difference between dates.
as.Date("2009-7-1") - as.Date("2008-12-1")
Time difference of 212 days
With difftime, you can specify the units:
difftime(as.Date("2009-7-1"), as.Date("2008-12-1"), units = "weeks")
Time difference of 30.28571 weeks
To add other timespans, use functions months(), years() or weeks() to
avoid problems with leap years
as.Date("2013-8-18") + years(10) + months(1)
[1] "2023-09-18"
```

Try this yourself The previous example showed a very useful trick for adding numbers to a Date to get a new Date a few days later. Confirm for yourself that this method accounts for leap years. That is, the day before 2011-3-1 should be 2011-2-28 (2011 is not a leap year). But what about 2012-3-1?

Often, text strings representing the date are not in the standard format. Fortunately, it is possible to
convert any reasonable sequence to a Date object in $\mathbf{R}$. All we have to do is provide a character string to as. Date and tell the function the order of the fields.

To convert any format to a Date, we can use the lubridate package, which contains the functions ymd, mdy, and all other combinations of $y, m$, and $d$. These functions are pretty smart, as can be seen in these examples:
\# Load lubridate
library(lubridate)
\# Day / month / year
as.Date(dmy("31/12/1991"))
\#\# [1] "1991-12-31"
\# Month - day - year (note, only two digits for the year)
as.Date(mdy("4-17-92"))
\#\# [1] "1992-04-17"
\# Year month day
as.Date(ymd("1976-5-22"))
\#\# [1] "1976-05-22"
\#-- Unusual formatting can be read in with the 'format' argument
\# in as.Date. See ?strptime for a list of codes.
\# For example, Year and day of year ("\%j" stands for 'Julian date')
as.Date("2011 121", format="\%Y \%j")
\#\# [1] "2011-05-01"
Another method to construct date objects is when you do not have a character string as in the above example, but separate numeric variables for year, month and day. In this case, use the ISOdate function:

```
as.Date(ISOdate(2008,12,2))
```

\#\# [1] "2008-12-02"
Finally, here is a simple way to find the number of days since you were born, using today from the lubridate package.

```
Today's date (and time) can be with the today() function
today()
[1] "2019-08-29"
We can now simply subtract your birthday from today's date.
today() - as.Date("1976-5-22")
Time difference of 15804 days
```


## Example: using dates in a dataframe

The as. Date function that we met in the previous section also works with vectors of dates, and the Date class can also be part of a dataframe. Let's take a look at the Hydro data (see description in Section A.3), to practice working with dates.

```
Read dataset
hydro <- read.csv("Hydro.csv")
```

```
Now convert this to a Date variable.
If you first inspect head(hydro$Date), you will see the format is DD/MM/YYYY
hydro$Date <- as.Date(dmy(hydro$Date))
```

If any of the date conversions go wrong, the dmy function (or its equivalents) should print a message letting you know. You can double check if any of the converted dates is na like this:

```
any(is.na(hydro$Date))
[1] FALSE
```

We now have successfully read in the date variable. The min and max functions are useful to check the range of dates in the dataset:

```
Minimum and maximum date (that is, oldest and most recent),
min(hydro$Date)
[1] "2005-08-08"
max(hydro$Date)
[1] "2011-08-08"
#... and length of measurement period:
max(hydro$Date) - min(hydro$Date)
Time difference of 2191 days
```

Finally, the Date class is very handy when plotting. Let's make a simple graph of the Hydro dataset. The following code produces Fig. 3.1. Note how the X axis is automatically formatted to display the date in a (fairly) pretty way.

```
with(hydro, plot(Date, storage, type='l')) # note plot type is letter 'l', not number '1'
```


### 3.6.2 Date-Time combinations

For dates that include the time, $\mathbf{R}$ has a special class called POSIXct. The lubridate package makes it easy to work with this class.
Internally, a date-time is represented as the number of seconds since the 1st of January, 1970. Time zones are also supported, but we will not use this functionality in this book (as it can be quite confusing).
From the lubridate package, we can use any combination of (y)ear,(m)onth,(d)ay, (h)our, (m)inutes, (s)econds. For example ymd_hms converts a character string in that order.

```
Let's look at some examples,
Load lubridate
library(lubridate)
The standard format is YYYY-MM-DD HH:MM:SS
ymd_hms("2012-9-16 13:05:00")
[1] "2012-09-16 13:05:00 UTC"
Read two times (note the first has no seconds, so we can use ymd_hm)
time1 <- ymd_hm("2008-5-21 9:05")
time2 <- ymd_hms("2012-9-16 13:05:00")
```



Figure 3.1: A simple plot of the hydro data.

```
Time difference:
time2 - time1
Time difference of 1579.167 days
And an example with a different format, DD/M/YY H:MM
dmy_hm("23-1-89 4:30")
[1] "1989-01-23 04:30:00 UTC"
To convert a date-time to a Date, you can also use the as.Date function,
which will simply drop the time.
as.Date(time1)
[1] "2008-05-21"
```

As with Date objects, we can calculate timespans using a few handy functions.

```
What time is it 3 hours and 15 minutes from now?
now() + hours(3) + minutes(15)
[1] "2019-08-29 19:15:50 AEST"
```

Try this yourself The 2012 Sydney marathon started at 7:20AM on September 16th. The winner completed the race in 2 hours, 11 minutes and 50 seconds. What was the time when the racer crossed the finish line? Using the weekdays function, which day was the race held?

## Example: date-times in a dataframe

Now let's use a real dataset to practice the use of date-times. We also introduce the functions month, yday, hour and minute to conveniently extract components of date-time objects.
The last command produces Fig. 3.2.

```
Read the 2008 met dataset from the HFE.
hfemet <- read.csv("HFEmet2008.csv")
Convert 'DateTime' to POSIXct class.
The order of the original data is MM/DD/YYYY HH:MM
hfemet$DateTime <- mdy_hm(hfemet$DateTime)
It is often useful to add the Date as a separate variable
hfemet$Date <- as.Date(hfemet$DateTime)
Make sure they all converted OK (if not, NAs would be produced)
any(is.na(hfemet$DateTime))
[1] FALSE
FALSE is good here!
Add day of year
hfemet$DOY <- yday(hfemet$DateTime)
Add the hour, minute and month to the dataframe:
hfemet$hour <- hour(hfemet$DateTime)
hfemet$minute <- minute(hfemet$DateTime)
Add the month. See ?month to adjust the formatting of the month
(it can be the full month name, for example)
hfemet$month <- month(hfemet$DateTime)
Now produce a plot of air temperature for the month of June.
with(subset(hfemet, month==6), plot(DateTime, Tair, type='l'))
We can also take a subset of just one day, using the Date variable we added:
hfemet_oneday <- subset(hfemet, Date == as.Date("2008-11-1"))
```


### 3.6.2.1 Sequences of dates and times

It is often useful to generate sequences of dates. We can use seq as we do for numeric variables (as we already saw in Section 1.6.1).

```
A series of dates, by day:
seq(from=as.Date("2011-1-1"), to=as.Date("2011-1-10"), by="day")
[1] "2011-01-01" "2011-01-02" "2011-01-03" "2011-01-04" "2011-01-05"
[6] "2011-01-06" "2011-01-07" "2011-01-08" "2011-01-09" "2011-01-10"
Two-weekly dates:
seq(from=as.Date("2011-1-1"), length=10, by="2 weeks")
[1] "2011-01-01" "2011-01-15" "2011-01-29" "2011-02-12" "2011-02-26"
[6] "2011-03-12" "2011-03-26" "2011-04-09" "2011-04-23" "2011-05-07"
```



Figure 3.2: Air temperature for June at the HFE

```
Monthly:
seq(from=as.Date("2011-12-13"), length=5, by="months")
[1] "2011-12-13" "2012-01-13" "2012-02-13" "2012-03-13" "2012-04-13"
```

Similarly, you can generate sequences of date-times.

```
Generate a sequence with 30 min timestep:
(Note that if we don't specify the time, it assumes midnight!)
Here, the 'by' field specifies the timestep in seconds.
fromtime <- ymd_hms("2012-6-1 0:00:00")
halfhours <- seq(from=fromtime, length=12, by=30*60)
```


### 3.7 Converting between data types

It is often useful, or even necessary, to convert from one data type to another. For example, when you read in data with read.csv or read.table, any column that contains some non-numeric values (that is, values that cannot be converted to a number) will be converted to a factor variable. Sometimes you actually want to convert it to numeric, which will result in some missing values (NA) when the value could not be converted to a number.

Another common example is when one of your variables should be read in as a factor variable (for example, a column with treatment codes), but because all the values are numeric, $\mathbf{R}$ will simply assume it is a numeric column.
Before we learn how to convert, it is useful to make sure you know what type of data you have to begin with. To find out what type of data a particular vector is, we use str (this is also useful for any other

```
object in R).
Numeric
y <- c(1,100,10)
str (y)
num [1:3] 1 100 10
This example also shows the dimension of the vector ([1:3]).
Character
x <- "sometext"
str(x)
chr "sometext"
Factor
p <- factor(c("apple","banana"))
str (p)
Factor w/ 2 levels "apple","banana": 1 2
Logical
z <- c(TRUE,FALSE)
str(z)
logi [1:2] TRUE FALSE
Date
sometime <- as.Date("1979-9-16")
str(sometime)
Date[1:1], format: "1979-09-16"
Date-Time
library(lubridate)
onceupon <- ymd_hm("1969-8-18 09:00")
str(onceupon)
POSIXct[1:1], format: "1969-08-18 09:00:00"
```

Try this yourself Confirm that str gives more information than simply printing the object. Try printing some of the objects above (simply by typing the name of the object), and compare the output to str.

To test for a particular type of data, use the is. functions, which give TRUE if the object is of that type, for example:

```
Test for numeric data type:
is.numeric(c(10,189))
[1] TRUE
Test for character:
is.character("HIE")
[1] TRUE
```

Try this yourself Try the functions is.factor and is.logical yourself, on one the previous examples. Also try is. Date on a Date variable (note that you must first load the lubridate package for this to work).

We can convert between types with the as.something class of functions.

```
First we make six example values that we will use to convert
mynum <- 1001
mychar <- c("1001","100 apples")
myfac <- factor(c("280","400","650"))
mylog <- c(TRUE,FALSE,FALSE,TRUE)
mydate <- as.Date("2015-03-18")
mydatetime <- ymd_hm("2011-8-11 16:00")
A few examples:
Convert to character
as.character(mynum)
[1] "1001"
as.character(myfac)
[1] "280" "400" "650"
Convert to numeric
Note that one missing value is created
as.numeric(mychar)
Warning: NAs introduced by coercion
[1] 1001 NA
Warning!!!
When converting from a factor to numeric, first convert to character
!!!
as.numeric(as.character(myfac))
[1] 280 400 650
Convert to Date
as.Date(mydatetime)
[1] "2011-08-11"
Convert to factor
as.factor(mylog)
[1] TRUE FALSE FALSE TRUE
Levels: FALSE TRUE
```

Try this yourself Try some more conversions using the above examples, and check the results with str and the is.something functions (e.g. is.character). In particular, see what happens when you convert a logical value to numeric, and a factor variable to numeric (without converting to character first).

When you want to change the type of a variable in a dataframe, simply store the converted variable in the dataframe, using the same name. For example, here we make the C02_treatment variable in the pupae dataset a factor:

```
pupae <- read.csv("pupae.csv")
pupae$CO2_treatment <- as.factor(pupae$CO2_treatment)
```


### 3.8 Functions used in this chapter

For functions not listed here, please refer to the index at the end of this book.

Function	What it does	Example use
all	Given a vector of logical values, returns TRUE if they are all true, FALSE if at least one is false.	all(c(TRUE, TRUE, FALSE)   all(letters == "a")
any	Given a vector of logical values, returns a single logical value. TRUE if there is at least one TRUE value, FALSE if there is not.	any (c(TRUE, FALSE, FALSE)   any(letters == "a")
as.character	Converts a variable to the character data type. This data type can hold either single characters (letters and symbols) or strings of characters (words and text). Particular useful for converting between factor and numeric data types.	as.character (c ( $0,0,0,1$ ) )   as.character (esoph\$alcgp)
as.Date	Used to convert a character string to the Date data type. Default order is YYYY-MMDD. You can also specify a custom format.	```as.Date("2014-02-07") as.Date("07/02/14", format="%d/%m/%y")```
as.factor	Converts a variable to the factor data type. Factors are categorical variables (for example, "Treatment" and "Control".) For converting numeric variables, see Section 3.2.	$\begin{aligned} & \text { as.factor (rep (c("F", "M") , } \\ & \text { each=5)) } \end{aligned}$
as.logical	Converts a variable to the logical data type. Logical values can hold only TRUE and FALSE values, represented by underlying os and 1 s .	as.logical (c (0, 0, 0, 1) )
as.numeric	Used to convert a variable to the numeric data type. Can hold whole or decimal numbers. Use caution when converting a factor. The result will be the underlying numeric representation, and may not match numerical values in the level names.	```as.numeric(c("1.5","2.6")) as.numeric(factor( c("25","30","35")))```
cat	Glues together bits of text and outputs them as a file. You need to specify the file name (file) and a character to separate the bits of text (sep.) Use sep=" " for spaces, and sep="\n" for newline.	```cat("Roses are red", "violets are blue", "you love R", "R loves you too!", file="poem.txt", sep="\n")```


Function	What it does	Example use
complete.cases	Finds all complete cases in a dataframe, returning TRUE for complete rows and FALSE for rows with an NA. Can be used to remove all rows with NAs by subsetting the dataset for complete.cases.	```airquality[ complete.cases( airquality),]```
cut	Can be used to divide a numerical variable into bins, in order to turn it into a factor variable. You must provide data to be broken and a number of breaks. Optionally, you can also provide labels.	```grades <- cut(50:100, 4, labels=c("P","C", "D","HD"))```
day	From the lubridate package. When given a Date, returns the day of the month.	```day(as.Date("2016 121", format="%Y %j")```
days	From the lubridate package. Easily creates time periods of a given number of days, which can be used for Date arithmetic.	$\begin{aligned} & \text { as.Date("2012-2-28") } \\ & + \text { days }(2) \end{aligned}$
describe	From the Hmisc package. Gives a statistical summary of a data set.	describe(mtcars) describe(airquality)
diff	Calculates the sequential difference between a series of numbers. The result is returned as a vector.	diff(airquality\$Wind)
difftime	Given two times, calculates the difference between them. You can specify which units you would like the result returned in (secs, mins, hours, days, weeks).	```difftime(now(), dmy("19011980"), units="weeks")```
dmy	From the lubridate package. Searches for a day, month and year (in that order) in a text string or a vector of strings. Can handle oddly formatted input, as long as the order is correct. Functions mdy, ymd and all other variations also exist.	$\begin{aligned} & \text { dmy("Born } 12 \text { July 1970") } \\ & \text { dmy("170914") } \end{aligned}$
droplevels	Drops unused factor levels.	droplevels(subset(   esoph, tobgp != "30+"))
factor	Can be used to create a new factor variable. When creating a new factor, levels specifies possible values for your factor levels, while labels specifies what the levels should be called. It is also possible to specify whether your factor ordered or not. Factors are ordered by the order given in levels.	```factor(quakes$stations) factor(rep(1:3, each=5), levels=c(1,2,3)) factor(rep(1:3, each=5), labels=c("B","A","C"), ordered=TRUE)```


Function	What it does	Example use
grep	Used to search for text strings using regular expressions. For a case-insensitive search, use ignore.case=TRUE. By default, returns the position of matches, but can also be set to return matching strings using value=TRUE. For more on regular expressions, see Section 3.5.3 and Table 3.1.	```grep("r", letters) grep("R", letters) grep("R", letters, ignore.case=TRUE) grep("^Merc", row.names(mtcars), value=TRUE)```
grepl	The same as grep, but returns a vector of logical values (matches are TRUE, nonmatches are FALSE). For more on regular expressions, see Section 3.5.3 and Table 3.1.	```grepl("a", c("a","b","a")) grepl("[H-P]", letters, ignore.case=TRUE) grepl("^Merc", row.names(mtcars))```
gsub	Uses regular expressions to search for matching strings, then replace them. Replaces all matches found. Case sensitivity can be set using ignore. case. For more on regular expressions, see Section 3.5.3 and Table 3.1.	$\begin{aligned} & \text { gsub("b[^e]", "be", } \\ & \text { c("bid", "ban", "bun")) } \\ & \text { gsub("gray", "grey", } \\ & \text { ignore.case=TRUE, } \\ & \text { "Gray clouds reflected } \\ & \text { in gray puddles") } \end{aligned}$
hour	From the lubridate package. When given a date-time object, returns the hour. Uses a 24 hour clock.	hour (now())
hours	From the lubridate package. Easily creates time periods of a given number of hours, which can be used for Date arithmetic.	now() + hours(2)
ifelse	Takes a logical test, a value to return if TRUE (yes), and a value to return if FALSE (no).	$\begin{aligned} & \text { ifelse(mtcars\$wt <= 3, } \\ & \text { yes="light", no="heavy") } \end{aligned}$
is.character	Tests whether a given variable is the character data type. Returns TRUE or FALSE.	is.character("?")
is.Date	Tests whether a given variable is the Date data type. Returns TRUE or FALSE.	is.Date(today())
is.factor	Tests whether a given variable is the factor data type. Returns TRUE or FALSE.	is.factor (esoph\$agegp)
is.logical	Tests whether a given variable is the logical data type. Returns TRUE or FALSE.	is.logical(c(TRUE, FALSE))
is.na	When given a list of values, returns TRUE if any are NA. Note that this is the only way to get logical values for an NA; NA == NA returns NA.	is.na(c(1, 1, 2, NA ) )
is.numeric	Tests whether a given variable is the numeric data type. Returns TRUE or FALSE.	is.numeric (mtcars\$wt)


Function	What it does	Example use
ISOdate	Given a numerical year, month, and day, returns a date-time object. There is also an ISOdatetime function, which adds hours, min and sec.	```ISOdate(2017, 1, 30) ISOdatetime(2014, 2, 7, 13, 31, 0)```
levels	Used to get or set levels of a factor variable.	```levels(esoph$tobgp) levels(esoph$tobgp) <- c("little","light", "medium","heavy")```
match	Looks for matches in a list of values. Returns the position of the first match found, in order.	match(c("t","o","p"), letters) match(c("p","o","t"), letters)
max	Returns the largest value in its input. Can also be used with dates.	$\max (\mathrm{ymd}(010119)$,
mdy(010119))		
mdy	From the lubridate package. Searches for a month, day and year in a text string or a vector of strings. Can handle oddly formatted input, as long as the order is correct. Functions dmy, ymd and all other variations also exist.	$\begin{aligned} & \text { mdy("Created June } 1 \text { 2015") } \\ & \text { mdy("122516") } \end{aligned}$
min	Returns the smallest value in its input. Can also be used with dates.	min(ymd (010119) ,
mdy(010119))		
minute	From the lubridate package. When given a date-time, returns the minute of the hour.	```minute(ymd_hm( "2012-09-16 7:20"))```
minutes	From the lubridate package. Easily creates time periods of a given number of minutes, which can be used for date-time arithmetic.	$\begin{aligned} & \text { ymd_hm("2012-09-16 7:20") } \\ & + \text { minutes }(20) \end{aligned}$
month	From the lubridate package. When given a Date, returns the month of the year.	month(dmy("24 Dec 2016"))
months	From the lubridate package. Easily creates time periods of a given number of months, which can be used for Date arithmetic.	mdy("060708") + months(5)
names	Used to get or set the name or names of a variable.	```names(iris) names(iris) <- c("slen", "swid","plen", "pwid","spp")```
nchar	Used to find the number of characters in each element of a character vector.	nchar (names (mtcars))


Function	What it does	Example use
nlevels	Used to find the number of levels for a factor variable.	nlevels(iris\$Species)
now	From the lubridate package. Returns the current time and date as a date-time object.	now() + minutes(45)
paste	Used to glue bits of text together, turning them into a single string. Can be used on vectors. You must specify a character to separate the bits of text (sep). Use sep="" for no separation. Can also turn a vector of strings into a single string using collapse. Set collapse equal to the characters to be used to glue the elements together.	```paste("t","o","p", sep="") paste("Iris", levels(iris$Species), sep=" ") paste("Iris", levels(iris$Species), collapse=", ")```
read.csv	Reads in data from comma-separated variable (CSV) files. Important arguments include the file name (or complete file path) and whether or not the file has a header. For more details, see Section 2.1.1.	```read.csv("Allometry.csv") read.csv("Allometry.csv", header=TRUE)```
read.table	A flexible function for reading data with different separating characters. To use read.table, you need to specify the character used to separate the data (sep) and whether the file has a header row (header). There are also many other options you can set to customize this function; for more see ?read.table.	```read.table("tab.txt", header=TRUE) read.table("semi.txt", sep=";", header=TRUE)```
readLines	Reads each line of a text file as a separate string and creates a character vector. (The first part of this example makes a new text file; the second part shows how readLines is used to read it in.)	```cat("Roses are red", "violets are blue", "you love R", "R loves you too!", file="poem.txt", sep="\n") readLines("poem.txt")```
rownames	Used to get or set the names of rows in a dataframe.	```rownames(mtcars) rownames(mtcars) <- gsub(" ", ".", rownames(mtcars))```
sample	Takes a given number of samples from a vector or a matrix. Can be set to sample with or without replacement. Default is without replacement.	```sample(1:6, size=6) sample(1:6, 6, replace=TRUE)```
seq	Generates a sequence from a given value to another value. Can be used on numbers, dates, or date-times.	```seq(1, 10, by=2.5) seq(from=ymd("170130"), length=6, by="months")```


Function	What it does	Example use
sort	Sorts a variable in ascending or descending order. Returns the reordered variable.	sort (10:1, decreasing=FALSE)   sort (LETTERS, decreasing=TRUE)
str	Gives information about the structure of an object. Can be used to find out which types of data a dataframe contains.	$\begin{aligned} & \text { str (iris) } \\ & \text { str (esoph) } \end{aligned}$
strsplit	Splits a text string into multiple smaller strings. The first argument, a string, is split by searching for the second argument, a regular expression. For more on regular expressions, see Section $3 \cdot 5 \cdot 3$ and Table 3.1.	strsplit(   "Roses are red", " ")
subset	Allows the selection of part of a dataframe, using logical operators to define which rows or columns should be included.	subset (mtcars, wt > 3)
substr	Can be used to extract or replace part of a string. Takes a string, which character to start on, and which the character to stop on.	```substr("Roses are red",11,13) r.txt <- c("Roses","are","red") substr(r.txt,1,2) <- c("") r.txt```
summary	Provides a summary of the variables in a dataframe. Statistics are given for numerical variables, and counts are given for factor variables.	summary (warpbreaks)
table	Given a factor variable, can create a table of counts.	table (esoph\$agegp)
today	Returns today's date (as a Date). Can be used for Date arithmetic	today () + days(10)
unique	Returns only the unique values in a vector.	unique (c (1, $2,1,5,5,2)$ )
weekdays	Can be used to get the day of the week from a Date object.	weekdays(today())
which	Given a vector of logical values, returns the positions of any that are TRUE. Can be combined with other logical tests.	$\begin{aligned} & \text { which(c(FALSE, TRUE, TRUE)) } \\ & \text { which(letters == "s") } \\ & \text { which(is.na(c(1,2,NA,2,NA))) } \end{aligned}$
yday	From the lubridate package. Gets the day of the year from a date object.	yday(today())
year	From the lubridate package. When given a Date object, returns the year.	year(now())
years	From the lubridate package. Easily creates time periods of a given number of years, which can be used for Date arithmetic.	```today() + years(2)```


Function	What it does	Example use
ymd	From the lubridate package. Searches for   a year, month and day (in that order) in a   text string or a vector of strings. Can han-   dle oddly formatted input, as long as the ("17890714")	
	order is correct. Functions mdy, dmy and all   other variations also exist.	

### 3.9 Exercises

In these exercises, we use the following colour codes:

- Easy: make sure you complete some of these before moving on. These exercises will follow examples in the text very closely.
- Intermediate: a bit harder. You will often have to combine functions to solve the exercise in two steps.
© Hard: difficult exercises! These exercises will require multiple steps, and significant departure from examples in the text.

We suggest you complete these exercises in an $\mathbf{R}$ markdown file. This will allow you to combine code chunks, graphical output, and written answers in a single, easy-to-read file.

### 3.9.1 Titanic

For this section, read the data described in Section A. 12 (p. 247). Note: the data are TAB-delimited, use read.table as shown on p. 247.

1.     - Convert the 'Name' (passenger name) variable to a 'character' variable, and store it in the dataframe. See Section 3.5.3 (p. 64).
2. How many observations of 'Age' are missing from the dataframe? See examples in Section 3.4 (p. 59).
3. ■ Make a new variable called 'Status', based on the 'Survived' variable already in the dataset. For passengers that did not survive, Status should be 'dead', for those who did, Status should be 'alive'. Make sure this new variable is a factor. See the example with the ifelse function in Section 3.2.
4.     - Count the number of passengers in each class (1st, 2nd, 3rd). Hint: use table as shown in Section 3.2 (p. 55).
5. Using grep, find the six passengers with the last name 'Fortune'. Make this subset into a new dataframe. Did they all survive? Hint: to do this, make sure you recall how to use one vector to index a dataframe (see Section 2.3.2). Also, the all function might be useful here (see Section 3.3, p. 58).
6. As in 2., for what proportion of the passengers is the age unknown? Was this proportion higher for 3rd class than 1st and 2nd? Hint: First make a subset of the dataframe where age is missing (see Section 3.4.2 on p. 61), and then use table, as well as nrow.

### 3.9.2 Hydro dam

Use the hydro dam data as described in Section A.3.

1. $■$ Start by reading in the data. Change the first variable to a Date class (see Section 3.6.1, p. 67).
2. Are the successive measurements in the dataset always exactly one week apart? Hint: use diff).
3. Assume that a dangerously low level of the dam is 235 Gwh . How many weeks was the dam level equal to or lower than this value?
4. $\Delta$ For question 2. , how many times did storage decrease below 235 (regardless of how long it remained below 235)? Hint: use diff and subset).

### 3.9.3 HFE tree measurements

Use the data for the HFE irrigation $x$ fertilisation experiment (see Section A.15, p. 248).

1. $\square$ Read the data and look at various summaries of the dataset. Use summary, str and describe (the latter is in the Hmisc package).
2. From these summaries, find out how many missing values there are for height and diameter. Also count the number of missing values as shown in Section 3.4 (p. 59).
3. Inspect the levels of the treatment (treat), with the levels function. Also count the number of levels with the nlevels function. Now assign new levels to the factor, replacing the abbreviations with a more informative label. Follow the example in Section 3.2.1 (p. 58).
4. Using table, count the number of observations by treat, to check if the dataset is balanced. Be aware that table simply counts the number of rows, regardless of missing values. Now take a subset of the dataset where height is not missing, and check the number of observations again.
5. For which dates do missing values occur in height in this dataset? Hint: use a combination of is.na and unique.

### 3.9.4 Flux data

In this exercise, you will practice useful skills with the flux tower dataset. See Section A. 8 (p. 245) for a description of the dataset.

1. $\quad$ Read the dataframe. Rename the first column to 'DateTime' (recall Section 3.5.2 on p. 63).
2. Convert DateTime to a POSIXct class. Beware of the formatting (recall Section 3.6.2 on p. 69).
3. Did the above action produce any missing values? Were these already missing in the original dataset?
4. Add a variable to the dataset called 'Quality'. This variable should be 'bad' when the variable 'ustar' is less than 0.15, and 'good' otherwise. Recall the example in Section 3.2 (p. 55).
5. Add a 'month' column to the dataset, as well as 'year'.
6. Look at the 'Rain' column. There are some problems; re-read the data or find another way to display NA whenever the data have an invalid value. Hint: look at the argument na.strings in read.table.

### 3.9.5 Alphabet Aerobics 3

In this exercise you will practice a bit more working with text, using the lyrics of the song 'Alphabet Aerobics' by Blackalicious. The lyrics are provided as a text file, which we can most conveniently read into a vector with readLines, like this,
lyric <- readLines("alphabet.txt")

1. Read the text file into a character vector like above. Count the number of characters in each line (Hint : use nchar).
2. Extract the first character of each line (recall examples in Section 3.5 on p .62 ), and store it in a vector. Now sort this vector alphabetically and compare it to the unsorted vector. Are they the same? (Hint : use the == operator to compare the two vectors). How many are the same, that is, how many of the first letters are actually in alphabetical order already?
3. $\Delta$ Find the most frequent word used in the lyrics. To do this, first paste all lyrics together into one string, then split the string into words, remove commas, then count the words. You will need to use a new function that we will see again in Section 8.2.2. Hint : use a combination of paste, strsplit, gsub, table and sort.

### 3.9.6 DNA Aerobics

DNA sequences can also be represented using text strings. In this exercise, you will make an artificial DNA sequence.

1. $\triangle$ Make a random DNA sequence, consisting of a 100 random selections of the letters $\mathrm{C}, \mathrm{A}, \mathrm{G}, \mathrm{T}$, and paste the result together into one character string (Hint : use sample as in Section 1.6.2, p. 19 with replacement, and use paste as shown in Section 3.5, p. 62). Write it in one line of R code.

## Chapter 4

## Visualizing data

### 4.1 The R graphics system

The graphics system in $\mathbf{R}$ is very flexible: just about every aspect of your plot can be precisely controlled. However, this brings with it a serious learning curve - especially when you want to produce high quality polished figures for publication. In this chapter, you will learn to make simple plots, and also to control different aspects of formatting plots. The following focus on the basic built-in graphics system in $\mathbf{R}$, known as the base graphics system.

### 4.2 Plotting in RStudio

By default, when you generate plots in RStudio, they are displayed in the built-in plotting window (normally, the bottom-right). This window has a few useful options.


Figure 4.1: The plotting window in RStudio. 1: cycle through plotting history, 2 : displays the plot in a large window, 3 : Export the plot to an image or PDF, 4 : delete the current plot from the plotting history, 5 : clear all plotting history

### 4.3 Choosing a plot type

The following table summarizes a few important plot types. More specialized plot types, as well as very brief introductions to alternative plotting packages, are given in Section 4.6.

Function	Graph type
plot	Scatter plots and various others (Section 4.3.1)
barplot	Bar plot (including stacked and grouped bar plots) (Section 4.3.2)
hist	Histograms and (relative) frequency diagrams (Section 4.3.3)
curve	Curves of mathematical expressions (Section 4.3.3)
pie	Pie charts (for less scientific uses) (Section 4.3.4)
boxplot	Box-and-whisker plots (Section 4.3.5)
symbols	Like scatter plot, but symbols are sized by another variable (Section 4.6.1)

### 4.3.1 Using the plot function

There are two alternative ways to make a plot of two variables X and Y that are contained in a dataframe called dfr (both are used interchangeably):

```
Option 1: plot of X and Y
with(dfr, plot(X,Y))
Option 2: formula interface (Y 'as a function of' X)
plot(Y ~ X, data=dfr)
```

The type of plot produced by this basic command, using the generic plot function, depends on the variable type of X and Y . If both are numeric, a simple scatter plot is produced (see Section 4.4). If Y is numeric but x is a factor, a boxplot is produced (see Section 4.3.5). If only one argument is provided and it is a data frame with only numeric columns, all possible scatter plots are produced (not further described but see ?plot.data.frame). And finally, if both $X$ and $Y$ are factor variables, a mosaic plot is produced (not further described in detail but see Section 7.5.1 and plot.factor).

Each of these four options is shown in Fig. 4.2 (code not included).

### 4.3.2 Bar plots

While simple barplots are easy in $\mathbf{R}$, advanced ones (multiple panels, groups of bars, error bars) are more difficult. For those of you who are skilled at making complex barplots in some other software package, you may not want to switch to $\mathbf{R}$ immediately. Ultimately, though, $\mathbf{R}$ has greater flexibility, and it is easier to make sure plots are consistent.
The following code makes a simple bar plot, using the default settings (Fig. 4.3):

```
nums <- c(2.1,3.4,3.8,3.9,2.9,5)
barplot(nums)
```

Very often, we like standard errors on our bar plots. Unfortunately, this is slightly awkward in basic R.
The easiest option is to use barplot2 in the gplots package, but it provides limited customization of the error bars. Another, more flexible, solution is given in the example below. Here, we use barplot for the bars, and plotCI for the error bars (from the plotrix package). This example also introduces the tapply function to make simple tables, we will return to this in Section 6.2.1.
If you want the means and error bars to be computed by the function itself, rather than provide them as in the example below, refer to Section 4.6.2.
The following code produces Fig. 4.4.

```
Read data, if you haven't already
cereal <- read.csv("Cereals.csv")
```



Figure 4.2: Four possible outcomes of a basic call to plot, depending on whether the $Y$ and $X$ variables are numeric or factor variables. The term 'numeric dataframe' means a dataframe where all columns are numeric.


Figure 4.3: Simple bar plot with default settings

```
Gets means and standard deviation of rating by cereal manufacturer:
ratingManufacturer <- with(cereal, tapply(rating, Manufacturer, FUN=mean))
ratingManufacturerSD <- with(cereal, tapply(rating, Manufacturer, FUN=sd))
Make bar plot with error bars. Note that we show means +/- one standard deviation.
Read the help function ?plotCI to see what the additional arguments mean (pch, add).
library(plotrix)
b <- barplot(ratingManufacturer, col="white", width=0.5, space=0.5, ylim=c(0,80))
plotCI(b, ratingManufacturer, uiw=ratingManufacturerSD, add=TRUE, pch=NA)
```

Finally, to make 'stacked' bar plots, see the example in Section 4.3.4.

### 4.3.3 Histograms and curves

The hist function by default plots a frequency diagram, and computes the breaks automatically. It is also possible to plot a density function, so that the total area under the bars sums to unity, as in a probability distribution. The latter is useful if you want to add a curve representing a univariate distribution.

Consider the following example, which plots both a frequency diagram and a density plot for a sample of random numbers from a normal distribution. (See chapter 5 for background on the functions dnorm and rnorm.)

This example uses the par function to change the layout of the plot. We'll return to this in Section 4.4.8. This code produces Fig. 4.5.


Figure 4.4: Simple bar plot with error bars (shown are means +/- one standard deviation).

```
Some random numbers:
rannorm <- rnorm(500)
Sets up two plots side-by-side.
The mfrow argument makes one row of plots, and two columns, see ?par.
par(mfrow=c (1,2))
A frequency diagram
hist(rannorm, freq=TRUE, main="")
A density plot with a normal curve
hist(rannorm, freq=FALSE, main="", ylim=c(0,0.4))
curve(dnorm(x), add=TRUE, col="blue")
```

Try this yourself We also introduced the curve function here. It can plot a curve that represents a function of x . For example, try this code yourself:
curve ( $\sin (x)$, from=0, to= $2 * \mathrm{pi}$ )

### 4.3.4 Pie charts

The final two basic plotting types are pie charts and box plots. It is recommended you don't use pie charts for scientific publications, because the human eye is bad at judging relative area, but much better at judging relative lengths. So, barplots are preferred in just about any situation. Take the following example, showing the polls for 12 political parties in the Netherlands (see Section A.17).


Figure 4.5: Two histogram examples for some normally distributed data.

Most people will say that the fraction of voters for the smaller parties is exaggerated in the pie chart.
This code produces Fig. 4.6.

```
Election poll data
election <- read.csv("dutchelection.csv")
A subset for one date only (Note: unlist makes this into a vector)
percentages <- unlist(election[6, 2:ncol(election)])
Set up two plots side-by-side
par(mfrow=c(1,2))
A 'stacked' bar plot.
the matrix() bit is necessary here (see ?barplot)
Beside=FALSE makes this a stacked barplot.
barplot(matrix(percentages), beside=FALSE, col=rainbow(12), ylim=c(0,100))
And a pie chart
pie(percentages, col=rainbow(12))
```

Try this yourself Run the code above to generate a stacked barplot. Now, set beside=TRUE and compare the result.

Now what if we want to compare different timepoints to see whether the support for each political party is changing? To produce multiple stacked barplots using the barplot function, we need to convert the way that the data are stored from a dataframe to a matrix. Then, because the barplot function creates each stack in the barplot from the columns of the matrix, we need to transpose the matrix so that the data for different dates are in separate columns and the data for different parties are in separate rows.

```
A subset for the first and last dates
percentages2 <- election[c(1, nrow(election)), -1]
```



Figure 4.6: A stacked bar and pie chart for the election poll data.

```
Convert the resulting dataframe to a matrix
percentages2 <- as.matrix(percentages2)
change the rownames to represent the dates at those two timepoints
rownames(percentages2) <- election[c(1, nrow(election)), 'Date']
A 'stacked' bar plot for two timepoints.
the t() bit transposes the party data from columns to rows
beside=FALSE makes this a stacked barplot.
the xlim argument creates extra space on the right of the plot for the legend
barplot(t(percentages2), beside=FALSE, col=rainbow(12), ylim=c(0,100),
 xlim=c(0, 4), legend=colnames(percentages2))
```


### 4.3.5 Box plots

Box plots are convenient for a quick inspection of your data. Consider this example, where we use formula notation to quickly plot means and ranges for the sodium content of cereals by manufacturer.
This code produces Fig. 4.8.

```
cereal <- read.csv("Cereals.csv")
boxplot(sodium ~ Manufacturer, data=cereal, ylab="Sodium content", xlab="Manufacturer")
```



Figure 4.7: A stacked bar chart for the election poll data at two timepoints.


Figure 4.8: A simple box plot for the cereal data.


Figure 4.9: Simple scatter plot with default settings

### 4.4 Fine-tuning the formatting of plots

### 4.4.1 A quick example

We'll start with an example using the allom data. First, we use the default formatting, and then we change a few aspects of the plot, one at a time. We will explain the settings introduced here in more detail as we go along. This code produces Fig. 4.9, a simple scatter plot:

```
Read data
allom <- read.csv("allometry.csv")
Default scatter plot
with(allom, plot(diameter, height, col=species))
```

Now let's make sure the axis ranges start at zero, use a more friendly set of colours, and a different plotting symbol.
This code produces Fig. 4.10. Here, we introduce palette, a handy way of storing colours to be used in a plot. We return to this in the next section.

```
palette(c("blue","red","forestgreen"))
with(allom, plot(diameter, height, col=species,
 pch=15, xlim=c(0,80), ylim=c (0,50)))
```

Notice that we use species (a factor variable) to code the colour of the plotting symbols. More about this later in this section.
For this figure it is useful to have the zero start exactly in the corner (compare the origin to previous


Figure 4.10: Simple scatter plot : changed plotting symbol and $X$ and $Y$ axis ranges.
figure.) To do this we use xaxs and yaxs. Let's also make the X -axis and Y -axis labels larger (with cex.lab) and print nicer labels (with xlab and ylab).
Finally, we also add a legend (with the legend function.)
This code produces Fig. 4.11.

```
par(xaxs="i", yaxs="i", cex.lab=1.4)
palette(c("blue","red","forestgreen"))
plot(height ~ diameter, col=species, data=allom,
 pch=15, xlim=c(0,80), ylim=c (0,50),
 xlab="Diameter (cm)",
 ylab="Height (m)")
Add a legend
legend("topleft", levels(allom$species), pch=15, col=palette(), title="Species")
```


### 4.4.2 Customizing and choosing colours

You can change the colour of any part of your figure, including the symbols, axes, labels, and background. $\mathbf{R}$ has many built-in colours, as well as a number of ways to generate your own set of colours.
As we saw in the example above, it is quite handy to store a set of nice colours in the palette function. Once you have stored these colours they are automatically used when you colour a plot by a factor. As the default set of colours in $\mathbf{R}$ is very ugly, do choose your own set of colours before plotting. You can also choose specific colors from your palette. The following example would plot symbols using the 3rd colour in your palette (resulting graph not shown).


Figure 4.11: Simple scatter plot : many settings customized.

```
plot(x,y, col=3)
```

To pick one or more of the 657 built-in colours in $\mathbf{R}$, this website is very useful : http://research. stowers-institute.org/efg/R/colour/Chart/, especially the link to a PDF at the top, which lists the colours by name. You can also use the built-in demo function to show the colours,

```
Follow instructions in the console when running this command.
demo(colors)
```

The following is an example palette, with some hand-picked colours. It also shows one way to plot your current palette.

```
palette(c("blue2","goldenrod1","firebrick2","chartreuse4",
"deepskyblue1","darkorange1","darkorchid3", "darkgrey",
"mediumpurple1", "orangered2", "chocolate", "burlywood3",
"goldenrod4", "darkolivegreen2", "palevioletred3",
"darkseagreen3", "sandybrown", "tan",
"gold","violetred4","darkgreen"))
A simple graph showing the colours.
par(cex.axis=0.8, las=3)
n <- length(palette())
barplot(rep(1,n),
 col=1:n,
 names.arg=1:n, axes=FALSE)
```



## Ranges of colours

$\mathbf{R}$ also has a few built-in options to set a range of colours, for example from light-grey to dark-grey, or colours of the rainbow.

A very useful function is colorRampPalette, see its help page and the following examples:

```
Generate a palette function, with colours in between red and blue:
redbluefun <- colorRampPalette(c("red","blue"))
The result is a function that returns any number of colours interpolated
between red and blue.
For example, set the palette to 10 colouts ranging from red to blue:
palette(redbluefun(10))
```

Other functions that are useful are rainbow, heat.colors, grey, and so on (see help page for rainbow for a few more). The RColorBrewer package also contains the brewer.pal function, which helps to generate palettes that are suitable for different types of graphics requiring scales of light and dark colours or highly contrasting colours. It even has functionality for selecting colour schemes that are 'colour-blind friendly', for example:


## Try this yourself Look at ?grey and figure out how to generate a palette of 50 shades of grey.

Here is an example where it might be handy to use a range of colours. Take a look at the HFE weather data (Section A.10). What is the relationship between air temperature (Tair), vapour pressure deficit (VPD) and relative humidity? Here is a nice way to visualize it.
This code produces Fig. 4.12. Here we use also the cut function, which was introduced in Section 3.2.

```
Read data.
hfemet <- read.csv("hfemet2008.csv")
Make a factor variable with 10 levels of relative humidity.
hfemet$RHbin <- cut(hfemet$RH, breaks=10)
Look at the levels: they are from low RH to high RH
levels(hfemet$RHbin)
[1] "(14.8,23.1]" "(23.1,31.4]" "(31.4,39.7]" "(39.7,48]" "(48,56.2]"
Set colours correspondingly, from red to blue.
blueredfun <- colorRampPalette(c("red","blue"))
palette(blueredfun(10))
Plot VPD and Tair, with the colour of the symbol varying by RH.
Also set small plotting symbols.
par(cex.lab=1.3)
with(hfemet, plot(Tair, VPD, pch=19, cex=0.5, col=RHbin))
Finally, add a legend:
legend("topleft", levels(hfemet$RHbin), fill=palette(), title="RH")
```



Figure 4.12: Relationship between air temperature, vapour pressure deficit and relative humidity at the HFE.

## Semi-transparent colours

If your plot contains a lot of data points, a semi-transparent colour can be useful, so you can see points that would otherwise be obscured.

This example makes Fig. 4.13, using the scales package.

```
Load the scales package for the 'alpha' function.
library(scales)
Make a large dataset with random numbers
x <- rnorm(1000)
y1 <- x + rnorm(1000, sd=0.5)
y2 <- -x + rnorm(1000, sd=0.6)
Use alpha() like this to make a colour transparent,
the numeric value indicates how transparent the result should be
(lower values = more transparent)
plot(x,y1,pch=19,col=alpha("blue",0.3))
points(x,y2, pch=19, col=alpha("red",0.3))
```


### 4.4.3 Customizing symbols and lines

Using the plot function, you can make both scatter plots and line plots, and combinations of both. Line types (solid, dashed, thickness, etc.) and symbols (circles, squares, etc.) can be customized.


Figure 4.13: A plot of some random numbers, using a semi-transparent colour.

Consider these options when plotting a vector of observations (makes Fig. 4.14).

```
X <- 1:8
Y <- c(4,5.5,6.1,5.2,3.1,4,2.1,0)
par(mfrow=c (3,2))
plot(X,Y, type='p', main="type='p'")
plot(X,Y, type='o', main="type='o'")
plot(X,Y, type='b', main="type='b'")
plot(X,Y, type='l', main="type='l'")
plot(X,Y, type='h', main="type='h'")
plot(X,Y, type='s', main="type='s'")
```

For symbols, use the pch argument in plot. These are most quickly set with a number, see the table on the help page ?points.

A few examples with the pch argument are shown here. This code produces Fig. 4.15.

```
par(mfrow=c (2,2))
Open triangles:
with(allom, plot(diameter, height, pch=2, col="red"))
Red solid squares:
with(allom, plot(diameter, height, pch=15, col="red"))
Filled circles, with a black edge, and a grey fill colour:
with(allom, plot(diameter, height, pch=21, bg="grey", col="black"))
Custom plotting symbol (any text works - but only one character)
```



Figure 4.14: Four options for the plotting type (with type=).


Figure 4.15: Four options for the plotting symbols (with pch).
with(allom, plot(diameter, height, pch="W"))

## Setting symbol type by a factor level

Finally, it gets more interesting if we vary the plotting symbol by a factor, like we did with colours in the previous section. Look at this simple example that extends Fig. 4.10.
This code produces Figure 4.16. Note how we set up a vector of plotting symbols ( 1,2 and 15), and use the factor species to index it. To recall indexing, read Section 2.3.1.

```
palette(c("blue","red","forestgreen"))
with(allom, plot(diameter, height,
 col=species,
 pch=c(1,2,15)[species],
 xlim=c(0,80), ylim=c(0,50)))
```

Try this yourself Modify the code above so that the three species are plotted in three different shades of grey, with filled circles. Also add a legend, and increase the size of the axis labels.


Figure 4.16: Scatter plot : vary colour and symbol by species

### 4.4.4 Formatting units, equations and special symbols

In scientific publications we frequently need sub-and superscripts in our axis labels (as in $\mathrm{m}^{-2}$ ). Luckily, $\mathbf{R}$ has a flexible way of specifying all sorts of expressions in axis labels, titles, and legend texts. We have included a few examples here, and a full reference is given in the help page ?plotmath. It is especially helpful to run demo (plotmath). Recall that in RStudio, you can look at all your previous plots using the arrows near the top-left of the figures.

```
expression(Infected~area~(cm^2))
```

Infected area ( $\mathrm{cm}^{2}$ )

```
expression(Photosynthesis~ ~(mu*mol~m^-2~s^-1))
```

Photosynthesis $\left(\mu \mathrm{mol} \mathrm{m}^{-2} \mathrm{~s}^{-1}\right)$

```
expression(Temperature~ ~(degree*C))
```

Temperature $\left({ }^{\circ} \mathrm{C}\right)$

Try this yourself The above examples of expressions can be directly used in plots. Try making a scatter plot, and using two of the above expressions for the $X$ and $Y$ axis labels, by using this template:
plot(x,y, xlab=expression(...))
You may find that the margins of the plot need to be larger. To increase them use this command (before plotting):
$\operatorname{par}(\operatorname{mar}=c(5,5,2,2))$

Try this yourself As shown on the help page ?plotmath, you can make subscripts in labels (using expression) with square brackets ([]). Try making a label with a subscript.

## Special text symbols

If you need a very special character - one that is not a Greek letter or a subscript, or is otherwise covered by plotmath - anything can be plotted if you know the Unicode number (http: //en. wikipedia. org/wiki/Unicode_symbols). You can plot those with this short example (results not shown):
expression(Permille ${ }^{\sim}$ " $\backslash$ 2030")
The four digit (or letter) Unicode follows 'u'.

### 4.4.5 Resetting the graphical parameters

Every time you use par to set some graphical parameter, it keeps this setting for all subsequent plots. In RStudio, the following command can be used to reset par to the default values. Warning: this will delete all the plots you have saved in the plot history.

```
dev.off()
```


### 4.4.6 Changing the font

There are (only) three basic built-in fonts in $\mathbf{R}$, but you can load many more with the help of windowsFonts (on Windows only). The fonts can be accessed with the family argument. You can set this argument in plot (for axis titles), text (for adding text to plots), as well as par (to change the font permanently for all text).
Note that in ?par, the font argument refers to "italic", "bold", and so on (see below).

```
A font with a serif (looks a bit like Times New Roman)
plot(x,y, xlab="some label", family="serif")
```

Using windowsFonts, you can use any font that is loaded in Windows (that is, all the fonts you can see in MS Word). Note: this does not work when making a PDF. For more flexibility, consider using the showtext package.

```
Define font(s)
windowsFonts(courier=windowsFont("Courier New"),
 verdana=windowsFont("Verdana"))
Then you can use,
plot(x,y, xlab="some label", family="courier")
```

Try this yourself Run one of the examples in Section 4.4, and change the font of the axis labels to one of your favourite MS Word fonts.

Further reading If you are interested in using a wider range of fonts, the showtext package can help you out. There is a description of what showtext does from its creator, Yixuan Qiu, at https://www.r-project.org/nosvn/pandoc/showtext.html. Yixuan has also posted a helpful guide to using showtext in markdown documents on his blog: http://statr.me/2014/07/ showtext-with-knitr/.

## Italic and bold

The font argument can be used to set text to normal face (1), bold (2), italic (3) or bold italic (4). Simply use the following code, changing the number as appropriate:

```
A plot with a title in italics
plot(x,y, main="Italic text", font=3)
```


### 4.4.7 Adding to a current plot

Suppose you have made a plot, and want to add points or lines to the current plot, without opening a new window. For this, we can use the points function (Note: this can also be used to add lines, using the type='l' setting).
Consider the following example. Instead of plotting all the data at once, we plot the data for one group, and then add the data for each following group using points.
The following code produces Fig. 4.17.

```
Read the Dutch election poll data
election <- read.csv("dutchelection.csv")
election$Date <- as.Date(election$Date)
Plot the first variable (make sure to set the Y axis range
wide enough for all the other data!)
plot(VVD ~ Date, data=election, type='l', col="blue", ylim=c(0,40),
 ylab="Poll result (%)")
Then add the rest of the results, one at a time.
points(PvdA ~ Date, data=election, type='l', col="red")
points(SP ~ Date, data=election, type='l', col="red", lty=5)
points(GL ~ Date, data=election, type='l', col="forestgreen")
```


## Straight lines and text

To place straight lines on a plot, use the following examples (results not shown). For the abline function, you may use settings like lwd for the thickness of the line, lty for line type (dashed, etc.), and col for colour.

Using abline, it is also straightforward to add regression lines to a plot, as we will see in Section 5.5.


Figure 4.17: Adding lines to an existing plot.

```
Add a vertical line at x=0
abline(v=0)
Add a horizontal line at y=50
abline(h=50)
Add a line with an intercept of 0 and a slope of 1
(known as a 1:1 line)
abline(0,1)
```

Adding text to a plot is achieved with the text function. Text can also be added to the margin of a plot with mtext. You may also use expression as the text to be added (see Section 4.4.4). The drawback of using text is that you need to specify the $X, Y$ coordinates manually. What if you just want a quick label on the top left of your figure?

Try this:

```
Add a bold label 'A' to an existing plot:
legend("topleft", expression(bold(A)), bty='n', inset=0.01)
```

Try this yourself Test the above code with any of the examples in this chapter.

### 4.4.8 Changing the layout

We have already seen several examples that combine multiple figures in one plot, using par (mfrow = c (rows, columns)). Here is another example, which generates the plot in Fig. 4.18. See ?par for more


Figure 4.18: Multiple plots within a single plot window.
details.

```
Set up 2 rows of plots, and 2 columns using 'mfrow':
par(mfrow=c (2,2),mar=c(4.1,4.1,0.1,0.1))
plot(leafarea~height,data=allom,col=species,xlab='', pch=15)
plot(leafarea~diameter,data=allom,col=species,xlab='',ylab='',pch=15)
plot(branchmass~height,data=allom, col=species,pch=15)
plot(branchmass~diameter,data=allom,col=species,ylab='',pch=15)
```

This is a relatively simple way to change the layout of plots. We can generate more complex layouts using the layout function. The main argument is a matrix indicating the locations of individual plots in space. Using the code below (resulting plot not shown), the first plot will fill the the left side of the plot window, while the next three calls to plot will fill each section on the right side of the window in the order that they are labelled. Further arguments allow for varying the heights and widths of boxes within the layout.

```
l<-layout(matrix(c(1, 1, 1, 2, 3,4),nrow=3,ncol=2, byrow=F))
layout.show(l)
```

Try this yourself Run the code from the above example. Then, run only the first bit to set up a fresh layout. Then make a series of plots, and see how they fill the layout (Hint: you can just run plot(1) several times in a row to see what happens).

### 4.4.9 Finding out about more options

To get the most out of plotting in $\mathbf{R}$, you need a working knowledge of par options, which are used to set graphical parameters. We've used some of these already. Here is a summary of a few of the most useful settings, including a few new ones:

Table 4.1: Setting graphical parameters using par

Graphical parameter	Description
pch	Sets the type of symbols used in the plot; see points() for a list of options.
type	Sets whether to plot points, lines, both, or something else (see ?plot.)
col	Sets the colour of plotting symbols and lines.
lty	Sets the line type (1=solid, $2=$ dashed, etc.)
lwd	Sets the line width
cex	Controls the size of text and points in the plot area. Short for 'character expansion', it acts as a multiplier of the default value.
cex.axis, cex.lab	Character expansion of axes and the labels.
cex.main	Character expansion of the title of the plot.
family	Sets the font for labels and titles. Varies by system, but 'serif','sans' and 'mono' should always work.
bty	Sets the type of box, if any, to be drawn around the plot. Use bty='n' for none.
las	Sets the orientation of the text labels relative to the axis
mar	Sets the number of lines in each margin, in the order bottom, left, top, right.
xaxs, yaxs	Preset functions for calculating axis intervals.
xaxp, yaxp	Sets the coordinates for tick marks on each axis.
xaxt, yaxt	Sets axis type, but can also suppress plotting axes by specifying 'n'.

You can choose to set an option with the par function, which will apply that setting to any new plots (until you change it again). Alternatively, you can use any of these settings when calling plot or points to change only the current plot. See this example (output not shown try this yourself).

```
Two ways of setting the size of the X and Y axis labels:
1.
plot(1:10, 1:10, cex.lab=1.2)
2.
par(cex.lab=2)
plot(1:10,1:10)
For the latter, the setting is maintained for the next plot as well.
plot(1:3, 1:3)
```

Further reading Keeping on top of all the options associated with par can be difficult. The ?par help page has been dramatically improved in recent years, but can still be a bit too much information. It's very helpful to have some quick references at your fingertips. Take a look http://www.statmethods.net/advgraphs/parameters.html from the Quick-R website, and Gaston Sanchez's handy cheat sheet at http://gastonsanchez.com/resources/2015/09/22/ R-cheat-sheet-graphical-parameters/.

### 4.5 Formatting examples

### 4.5.1 Vessel data

This example will use a lot of what we learned in this section to fine-tune the formatting of a plot. We will use the vessel data (see Section A.13). In this dataset, the expectation was that xylem vessel diameters are smaller in the top of the tree than at the bottom. Rather than going straight to statistical analyses (ANOVAs and so on) it is wise to visualize the data first.
The normal workflow for optimizing your plots is to first use the default settings to make sure you are plotting the correct data, and then fine-tuning one aspect of the plot at a time. This can take a while, but the end result should be worth it. Here we show a default histogram, and the fine-tuned version after some work.

The following code produces Fig. 4.19.

```
Read vessel data, and make two datasets (one for 'base' data, one for 'apex' data).
vessel <- read.csv("vessel.csv")
vesselBase <- subset(vessel, position=="base")
vesselApex <- subset(vessel, position=="apex")
Set up two figures next to each other:
par(mfrow=c(1,2))
Simple histograms, default settings.
hist(vesselBase$vesseldiam)
hist(vesselApex$vesseldiam)
```

Next, we make the two histograms again, but customize the settings to produce a high quality plot. Try to figure out yourself what the options mean by inspecting the help files ?hist, and ?par.
This code produces Fig. 4.20. (To run this code, make sure to read the vessel data first, as shown in the previous example).

```
Fine tune formatting with par()
par(mfrow=c(1,2), mar=c(5,5,4,1), cex.lab=1.3, xaxs="i", yaxs="i")
First panel
hist(vesselBase$vesseldiam,
 main="Base",
 col="darkgrey",
 xlim=c(0,160), breaks=seq(0,160,by=10),
 xlab=expression(Vessel~diameter~ ~(mu*m)),
 ylab="Number of vessels")
Second panel
```



Figure 4.19: Two simple default histograms

```
hist(vesselApex$vesseldiam,
 main="Apex",
 col="lightgrey",
 xlim=c(0,160), breaks=seq(0,160,by=10),
 xlab=expression(Vessel~diameter~ ~(mu*m)),
 ylab="Number of vessels")
```


### 4.5.2 Weather data

Suppose you want to plot more than one variable in a plot, but the units (or ranges) are very different. So, you decide to use two axes. Let's look at an example. For more information on how to deal with the date-time class, see Section 3.6.2.

This code produces Fig. 4.21.

```
Read the hfemet data. Avoid conversion to factors.
hfemet <- read.csv("HFEmet2008.csv", stringsAsFactors=FALSE)
Convert to a proper DateTime class:
library(lubridate)
hfemet$DateTime <- mdy_hm(hfemet$DateTime)
Add the Date :
hfemet$Date <- as.Date(hfemet$DateTime)
Select one day (a cloudy day in June).
hfemetsubs <- subset(hfemet, Date==as.Date("2008-6-1"))
Plot Air temperature and PAR (radiation) in one plot.
First we make a 'vanilla' plot with the default formatting.
with(hfemetsubs, plot(DateTime, Tair, type='l'))
par (new=TRUE)
```



Figure 4.20: Two customized histograms

```
with(hfemetsubs, plot(DateTime, PAR, type='l', col="red",
 axes=FALSE, ann=FALSE))
The key here is to use par(new=TRUE), it produces the next
plot right on top of the old one.
```

Next, we make the same plot again but with better formatting. Try to figure out what everything means by inspecting the help pages ?par, ?legend, and ?mtext, or by changing the parameters yourself, one at a time.

This code produces Fig. 4.22.

```
par(mar=c(5,5,2,5), cex.lab=1.2, cex.axis=0.9)
with(hfemetsubs, plot(DateTime, Tair, type='l',
 ylim=c(0,20), lwd=2, col="blue",
 xlab="Time",
 ylab=expression(T[air]~ ~(""~"o"*C))))
par(new=TRUE)
with(hfemetsubs, plot(DateTime, PAR, type='l', col="red",
 lwd=2,
 ylim=c(0,1000),
 axes=FALSE, ann=FALSE))
axis(4)
mtext(expression(PAR~ ~(mu*mol~m^-2~s^-1)), side=4, line=3, cex=1.2)
legend("topleft", c(expression(T[air]),"PAR"), lwd=2, col=c("blue","red"),
 bty='n')
```


### 4.6 Special plots

In this section, we show some examples of special plots that might be useful. There are also a large number of packages that specialize in special plot types, take a look at the plotrix and gplots packages, for example.


Figure 4.21: A default plot with two axes


Figure 4.22: A prettified plot with two axes

Very advanced plots can be constructed with the ggplot2 package. This package has its own steep learning curve (and its own book and website). For some complex graphs, though, it might be the easiest solution.

Further reading The ggplot2 package offers an alternative way to produce elegant graphics in $\mathbf{R}$, one that has been embraced by many $\mathbf{R}$ users (including those who developed RStudio.) It uses a totally different approach from the one presented here, however, so if you decide to investigate it, be prepared to spend some time learning new material. There are several good introductions available online: Edwin Chen's "Quick Introduction to ggplot2" at http://blog. echen . me/2012/01/17/quick-introduction-to-ggplot2/ and "Introduction to R Graphics with ggplot2," provided by the Harvard Institute for Quantitative Social Science at http://tutorials.iq. harvard. edu/R/Rgraphics/Rgraphics.html\#orgheadline19. More detail is available in a book by Hadley Wickham, the author of ggplot2. The title is "ggplot2 : Elegant graphics for data analysis," and it is available online from the WSU Library. Finally, the creators of RStudio offer a handy cheat sheet at https://www.rstudio.com/wp-content/uploads/2015/12/ggplot2-cheatsheet-2.0.pdf.

### 4.6.1 Scatter plot with varying symbol sizes

The symbols function is an easy way to pack more information in to a scatter plot, by providing a way to scale the size of the plotting symbols to another variable in the dataframe. Consider the following example:
This code produces Fig. 4.23.

```
Read data
cereal <- read.csv("Cereals.csv")
Choose colours
Find the order of factor levels, so that we can assign colours in the same order
levels(cereal$Cold.or.Hot)
[1] "C" "H"
We choose blue for cold, red for hot
palette(c("blue","red"))
Make the plot
with(cereal, symbols(fiber, potass, circles=fat, inches=0.2, bg=as.factor(Cold.or.Hot),
 xlab="Fiber content", ylab="Potassium content"))
```


### 4.6.2 Bar plots of means with confidence intervals

A very common figure in publications is to show group means with confidence intervals, an ideal companion to the output of an ANOVA analysis. Unfortunately, it is somewhat of a pain to produce these in $\mathbf{R}$, but the sciplot package has made this very easy to do, with the bargraph. CI function.
Let's look at an example using the pupae data.
This code produces Fig. 4.24.
\# Make sure to first install the sciplot package.
library(sciplot)
\# Read the data, if you haven't already


Figure 4.23: Cereal data with symbols size as a function of fat content and colour as function of whether the cereal is served hot (red) or cold (blue).

```
pupae <- read.csv("pupae.csv")
A fairly standard plot. See ?bargraph.CI to customize many settings.
with(pupae,
 bargraph.CI(T_treatment, Frass, CO2_treatment, legend=TRUE, ylim=c(0,2.5)))
```


### 4.6.3 Log-log axes

When you make a plot on a logarithmic scale, $\mathbf{R}$ does not produce nice axis labels. One option is to use the magicaxis package, which magically makes pretty axes for log-log plots. Consider this example, which makes Fig. 4.25.

```
Allometry data
allom <- read.csv("allometry.csv")
Magic axis package
library(magicaxis)
Set up some graphical parameters, like axis label size.
par(cex.lab=1.2)
Log-log plot of branch mass versus diameter
Here, we set axes=FALSE to suppress the axes
with(allom, plot(log10(diameter), log10(branchmass),
```



Figure 4.24: Mean frass by temperature and CO 2 treatment made with bargraph.Cl()

```
xlim=log10(c(1,100)),
ylim=log10(c(1,1100)),
pch=21, bg="lightgrey",
xlab="Diameter (cm)", ylab="Branch mass (kg)",
axes=FALSE))
```

\# And then we add axes.
\# unlog='xy' will make sure the labels are shown in the original scale,
\# and we want axes on sides 1 (X) and 2 (Y)
magaxis(unlog='xy', $\operatorname{side}=c(1,2))$
\# To be complete, we will add a regression line,
\# but only to cover the range of the data.
library (plotrix)
ablineclip(lm(log10(branchmass) ~ log10(diameter), data=allom),
$\mathrm{x} 1=\min (\log 10($ allom\$diameter)),
$x 2=\max (\log 10($ allom\$diameter $)))$
\# And add a box
box()

### 4.6.4 Trellis graphics

Trellis graphics are very useful for visualisation of hierarchically structured data. These include multifactorial experimental designs and studies with multiple observations on the same experimental unit


Figure 4.25: Branch mass versus tree diameter on a log-log scale. The axes were produced with the magicaxis package.
(multivariate data). Trellis graphics utilise the structure of a statistical model to easily generate a visual representation of the response according to this structure.

Let's use the data in pupae to generate plots of frass production by temperature, nested within $\mathrm{CO}_{2}$ treatment (Fig. 4.26), using bwplot from the lattice package.

```
Make sure to first install the 'lattice' package.
library(lattice)
bwplot() works best with factors; running the function with numeric or
integer variables produces odd plots.
CO2trt<-factor(pupae[['CO2_treatment']])
Use the standard formula notation for specifying variables, using the '|' symbol
to delineate the factor to split among subplots.
bwplot(Frass~T_treatment|CO2trt,data=pupae)
```

The dot represents the median value for the treatment, the box represents the $25 \%$ and $75 \%$ quantiles, and the hinges represent an estimated confidence interval. Outliers are plotted as circles outside of this range.

For comparisons of two numeric variables within levels of one or more factors, we use xyplot. The relationship between pupal weight and frass production can be seen using the following code, with the result in Fig. 4.27.
xyplot(Frass ~ PupalWeight|T_treatment:CO2trt, data=pupae)
The par settings will not help you here; trellis graphics use their own list of parameters. These can


Figure 4.26: Box and whiskers plot of frass by temperature and CO2 treatment.


Figure 4.27: Relationship between pupal weight and frass production within each temperature and $\mathrm{CO}_{2}$ treatment combination.

Temperature and CO2 effects on frass production


Figure 4.28: A bwplot with a main title added.
be found using trellis.par.get and changed using trellis.par. set. Plotting with lattice functions is different from generic plotting functions in that the call results in an object that contains all of the instructions for generating the plots. This way it is possible to make changes to the object without running the function again. First we run the function, saving it as an object.
frass.bwplot <- bwplot(Frass~T_treatment|CO2trt, data=pupae)
Typing frass.bwplot will results in Fig. 4.26. If you want to view or change any of the values stored in the object frass.bwplot, use the command: str (frass.bwplot). For example, we could add a title to the plot (see Fig. 4.28) using the following:
frass.bwplot[['main']]<-'Temperature and CO2 effects on frass production'
frass.bwplot
The help page ?Lattice has plenty of information on the options available for the different plot types.
Further reading The lattice package offers a comprehensive graphical environment. If you are interested in graphing multivariate data, it is an alternative to ggplot2. To find out more, start with the Quick-R website: http://www.statmethods.net/advgraphs/trellis.html. For a more detailed introduction see a lab written by Deepayan Sarkar, the package author, for his students: http://www.isid.ac.in/~deepayan/R-tutorials/labs/04_lattice_lab.pdf. Paul Murrell, the author of "R Graphics, Second Edition" (2011, Chapman Hall/CRC) has made his chapter on lattice graphics available online at https://www.stat.auckland.ac.nz/~paul/RGraphics/chapter4.pdf. Chapter 8, "An Introduction to the Lattice Package" from "A Beginner's Guide to R" by Zuur, Ieno and Meesters (2009, Springer) is available online through the WSU library.

### 4.7 Exporting figures

There is a confusing number of ways to export figures to other formats, to include them in Word documents, print them, or finalize formatting for submission to a journal. Unfortunately, there is no one perfect format for every application. One convenient workflow is to use R markdown, as discussed in Section 1.3.3. This allows you to embed figures directly into Word documents or PDF files. It also allows you to re-create the figures as needed when you update your analysis or data.

## Saving figures

You can save figures using the 'Export' button (as pointed out in Section 4.2). A better way, though, is to make exporting your figures part of your script. For this purpose, you can use the dev.copy2 type functions.

In this example, we make both a PDF and EPS of a figure. Here, we open up a plotting window (of a specified size, in this case 4 by 4 inches), make the plot, and save the output to an EPS and a PDF file.

```
windows (4,4)
par (mar=c (5, 5, 2, 2))
plot(x,y)
dev.copy2pdf(file="Figure1.pdf")
dev.copy2eps(file="Figure1.eps")
```


## Inserting figures in Word or Powerpoint

Copy and pasting figures into Word tends to result in a loss of quality. A better approach is to save files as PDFs and submit those with your manuscript. (And better yet, use markdown to incorporate your text, code and figures into a single PDF!)
If you do need to insert figures into Powerpoint, the easiest and safest way to do this is to copy-paste the figure straight into Powerpoint. In RStudio, follow these steps:

1. In the plotting window in RStudio, click 'Export'
2. Select 'Copy plot to clipboard...'
3. Select 'Metafile' just below the figure
4. Then click 'Copy plot'.

Then, in Powerpoint, paste (Ctrl-V).

### 4.7.1 Sharing figures

When sharing a figure with someone by email or another electronic method, PDF format is always preferred, because the quality of the figure in PDF is optimal. This is the case for viewing the plot on screen, as well as printed. See the previous section on how to generate a PDF of a figure.

### 4.7.2 Plots with many points or lines

When the above two options give you excessively large file sizes (for example, maps, or figures with tens of thousands of symbols or line pieces), consider converting the figure to a 'bitmap' type, such as
jpeg, png or tiff. Care must be taken that you use a high enough resolution to allow a decent print quality.
To make a fairly large . png, do:

```
First make a plot..
plot(1)
Example from ?dev.print
Make a large PNG file of the current plot.
dev.print(png, file = "myplot.png", width = 1024, height = 768)
```

The main drawback of this type of plot is that the character sizes, symbol sizes and so on do not necessarily look like those on your screen. You will have to experiment, usually by making the figure a few different times, to find the right par settings for each type of output.
In practice, it may be quicker and safer to make a PDF first, and then convert the PDF to a tiff file with another software package (for instance, Adobe Illustrator).

### 4.8 Functions used in this chapter

For functions not listed here, please refer to the index at the end of this book.

Function	What it does	Example use
abline	Adds a straight line to an existing plot. For a vertical line, use v and an x value. For a horizontal line, use $h$ and a y value. To add a sloped line, give slope (a) and intercept (b). Can also be passed a linear model object, see Section 5.5.	$\begin{aligned} & \text { abline }(\mathrm{v}=5) \\ & \text { abline }(\mathrm{a}=0, \mathrm{~b}=1) \end{aligned}$
ablineclip	From the plotrix package. Like abline, but adds the ability to specify coordinates where the line should start and stop.	$\begin{gathered} \text { ablineclip }(a=0, b=1, \\ \text { x1=1, y1=1, } \\ \text { x2=3, y2=3) } \end{gathered}$
bargraph.CI	From the sciplot package. Makes a bargraph of means and confidence intervals (+/- one standard error.) Arguments include $x$.factor (for the $x$ axis) and response (a numeric variable for which means will be calculated). For multifactorial experiments, use group for a second factor. Other statistics can be used instead of the mean and standard error; see ?bargraph.CI.	
barplot	Used to create a bar plot. Takes a vector of $y$ values. Names for groups can be supplied using names.arg. For bars beside one another, use beside=TRUE; for stacked bars use beside=FALSE. For a horizontal bar chart, use horiz=TRUE.	
barplot2	From the gplots package. Similar to barplot, but adds the ability to use different colours for the plot area, logarithmic axes, a background grid, and confidence intervals.	
boxplot	Creates quick box-and-whisker plots. Takes a formula: y ~ factor. Midline shows the median; lower and upper box edges show 1st and 3rd quartiles respectively. The range of the whiskers is a multiple of the difference between the 1st and 3rd quantiles. The default is 1.5 ; to extend to the furthest outlier use range=0.	$\begin{aligned} & \text { boxplot(ncases ~ agegp, } \\ & \text { data=esoph) } \end{aligned}$
bwplot	From the lattice package. Makes pretty box-and-whisker plots. Takes a formula: response ~ factor. For two grouping factors use response ~ first_grouplsecond_group.	


Function	What it does	Example use
colorRampPalette	Can be a bit confusing, but very useful. When given two or more colours, it outputs a new, custom function. This new function can then be used to generate colour pallets with any number of steps from those colours. See Section 4.4.2 for more explanation.	```greypal <- colorRampPalette(gray(0:1)) greypal(20)```
curve	Can be used to plot curves, or to add curves to an existing plot. The first argument can be either a function or an expression that evaluates to a curve. To specify the range of the curve, use the arguments from and to. Use add=TRUE to add a curve to an existing plot.	$\begin{aligned} & \text { curve }(\cos (x) \\ & \quad \text { from }=0, \text { to }=2 * \mathrm{pi}) \end{aligned}$
cut	Can be used to divide a numerical variable into bins and turn it into a factor variable. You must provide data to be broken and a number of breaks. Optionally, you can also provide labels.	$\begin{array}{r} \text { grades <- cut }(50: 100,4, \\ \text { labels=c("P", "C", } \\ \text { "D", "HD")) } \end{array}$
demo	A function which runs demos of different things $\mathbf{R}$ can do. In this chapter we looked at demo(colors). For other available demos, type demo().	$\begin{aligned} & \text { demo(colors) } \\ & \text { demo() } \end{aligned}$
dev.copy2eps	Copies a graphic you have constructed in $\mathbf{R}$ to an EPS file. Supply a file name.	```plot(mtcars) dev.copy2eps( file="Cars.eps")```
dev.copy2pdf	Copies a graphic you have constructed in $\mathbf{R}$ to a PDF file. Supply a file name.	```plot(iris) dev.copy2pdf( file="Iris.pdf")```
dev.off	Closes the current graphical device. Useful when you want to reset graphical parameters (par).	dev.off()
dnorm	Gives a density function for the normal distribution. Can be used to add a normal curve to a density histogram. You can supply a mean.	dnorm (x, mean=5)
expression	Used to add mathematical expressions to plot axes and annotations. These include subscripts, superscripts, Greek letters, other symbols, and Unicode characters. See ?plotmath and Section 4.4.4 for examples.	```expression(Area~(m~2)) expression(CO[2]) expression( Delta*degree*C)```
gray, grey	Returns codes for levels of grey from o (black) to 1 (white). Can be given either a single number or a vector. Both spellings work.	$\begin{aligned} & \operatorname{grey}(0.5) \\ & \operatorname{grey}(\operatorname{seq}(0.1,0.9, \\ & \quad \operatorname{by}=0.1)) \end{aligned}$


Function	What it does	Example use
heat.colors	Creates a vector of continuous shades from red to yellow. Supply the number of intermediate shades.	```heat.colors(5) plot(1:10, col=heat.colors(10)```
hist	Plots a histogram. Supply a vector of data. You can set how to determine breaks in the data; see ?hist for details. The argument freq specifies whether to plot frequency (freq=TRUE) or probability density (freq=FALSE).	
layout	Allows the design of complex layouts for graphics with multiple plots. The underlying idea is to divide the plot area into a grid (represented by a matrix) and use numbers to indicate which cells should be filled with 1...n plots. When more than one cell is filled with the same number, that plot will take up all of those cells. Once the layout has been designed, it will be filled, in order, with $n$ plots.	```1<-layout( matrix(c(1,1,2,3), nrow=2, ncol=2)) layout.show(l)```
legend	Takes care of most of the hard work involved in adding legends to plots. As a result, there are many, many possible arguments (see ?legend). The simplest possible use is to give a location for the legend (possibilities include "topright", "topleft","bottomright", "bottomleft" and "center" as well as xy coordinates), text for the labels (legend) and corresponding colours (fill).	```legend("topright", legend=c(1,2), fill=rainbow(2))```
magaxis	From the magicaxis package. Adds nicely arranged log-scale axes with appropriatelyspaced major and minor tick marks.	$\begin{gathered} \text { magaxis(unlog="xy" } \\ \text { side }=c(1,2)) \end{gathered}$
mtext	Adds text to the margins of a plot. Specify which side the text should appear on using 1=bottom, 2=left, 3=top, 4=right. To control how far out text should be, use line, starting from o (right next to the axis) and counting up as you move away.	$\begin{array}{r} \text { mtext ("Extra text", } \\ \text { side=2, line= } 2 \text { ) } \end{array}$
palette	A way of storing colours in R. Once you add colours to a new palette, they become available for use in future plots. See Section 4.4.2 for ways to take advantage of this. To create a new palette, supply a vector of colours. See also rainbow, heat.colors, grey, and colorRampPalette.	palette(rainbow(7))   palette(c("maroon1",   "olivedrab4",   "royalblue1"))


Function	What it does	Example use
pie	Used to plot pie charts. Takes a vector of numbers. You may also supply labels and colors (using col).	$\begin{gathered} \text { pie }(c(49,51), l a b e l s= \\ c(" H a l f \text { empty" } \\ \text { "Half full")) } \end{gathered}$
plot	Used to produce scatterplots and line plots. Most of this chapter focuses on explaining ways to use this function. To change the appearance of a single plot, rather than all future plots, most graphical parameters for par can be used directly in the plot function.	plot(1)
plotCI	From the plotrix package. Give x and y coordinates for the plots, and an upper interval width (uiw). For non-symmetrical confidence intervals, provide a lower interval width (liw).	See Section 4.3.2
points	Adds points to an existing graph.	See Section 4.4.7.
rainbow	Produces a vector of colors from red through orange, yellow, green, blue, purple, and magenta back to red. Supply the number of colors to be returned.	```plot(1:20, col=rainbow(20), pch=15)```
symbols	Creates plots using different types of symbols for each data point. Can be set to add to an existing plot.	```with(trees, symbols(Height, Volume, circles = Girth/24, inches = FALSE))```
tapply	Used to summarize data in dataframes. Will be discussed further in Chapter 6.	See Section 6.2.1
text	Adds text to a plot. Takes $x$ and $y$ coordinates as locations for the text; text is supplied to labels. The pos parameter offsets the text. Values 1, 2, 3 and 4 place text below, left, above, and right.	```plot(1) text(1,1,"A point", pos=4)```
trellis.par.get	Used to get the current graphical parameters for trellis plots. These are independent of the par parameters.	
trellis.par.set	Used to set the current graphical parameters for trellis plots. These are independent of the par parameters.	
windowsFonts	For Windows devices only. Allows you to define and use system fonts in $\mathbf{R}$ plots.	See Section 4.4.6
xyplot	From the trellis package. Can be used to produce multivariate scatterplots or time series plots.	See Section 4.6.4 and Fig. 4.27.

### 4.9 Exercises

In these exercises, we use the following colour codes:

- Easy: make sure you complete some of these before moving on. These exercises will follow examples in the text very closely.
- Intermediate: a bit harder. You will often have to combine functions to solve the exercise in two steps.
© Hard: difficult exercises! These exercises will require multiple steps, and significant departure from examples in the text.

We suggest you complete these exercises in an $\mathbf{R}$ markdown file. This will allow you to combine code chunks, graphical output, and written answers in a single, easy-to-read file.

### 4.9.1 Scatter plot with the pupae data

1. Read the pupae data (see Section A.6, p. 244). Convert 'CO2_treatment' to a factor. Inspect the levels of this factor variable.
2. $■$ Make a scatter plot of Frass vs. PupalWeight, with blue solid circles for a $\mathrm{CO}_{2}$ concentration of 280ppm and red for 400ppm. Also add a legend.
3. $\quad$ The problem with the above figure is that data for both temperature treatments is combined. Make two plots (either in a PDF, or two plots side by side), one with the 'ambient' temperature treatment, one with 'elevated'.
4. In the above plot, make sure that the X and Y axis ranges are the same for both plots. Hint: use xlim and ylim.
5. Instead of making two separate plots, make one plot that uses different colors for the $\mathrm{CO}_{(2)}$ treatments and different symbols for the 'ambient' and 'elevated' temperature treatments. Choose some nice symbols from the help page of the points function.
6. Add two legends to the above plot, one for the temperature treatment (showing different plotting symbols), and one for the $\mathrm{CO}_{2}$ treatments (showing different colours).
7. $\Delta$ Generate the same plot as above but this time add a single legend that contains symbols and colours for each treatment combination $\left(\mathrm{CO}_{2}: \mathrm{T}\right)$.
8. In Fig. 4.4, figure out why no error bar was plotted for the first bar.

### 4.9.2 Flux data

Use the Eddy flux data for this exercise (Section A.8, p. 245).

1. Produce a line plot for $\mathrm{FCO2}$ for one day out of the dataset (recall Section 3.6.2, p. 69).
2. Adjust the $X$ and $Y$ axis ranges, add pretty labels on the axes, increase the thickness of the line (see lwd in ?par).
3. Now add points to the figure (using points, see Section 4.4 . 7 on p. 104), with different colours for when the variable ustar is less than 0.15 ('bad data' in red). Hint: recall Section 3.2 on p. 55 on how to split a numeric vector into a factor.

### 4.9.3 Hydro dam

Use the hydro dam data as described in Section A.3.

1. ■ Read the hydro data, make sure to first convert the Date column to a proper Date class.
2. ■ Make a line plot of storage versus Date
3. $■$ Make the line thicker, and a dot-dashed style (see ?par). Use the search box in the RStudio help pane to find this option (top-right of help pane).
4. $\Delta$ Next, make the same plot with points (not lines), and change the colour of the points in the following way: forestgreen if storage is over 500, orange if storage is between 235 and 500, and red if storage is below 235. (Hint: use cut, as described in Section 3.2, p. 55).

### 4.9.4 Coloured scatter plot

Use the Coweeta tree data (see Section A.2, p. 243).

1. $\square$ Read the data, count the number of observations per species.
2. $\Delta$ Take a subset of the data including only those species with at least 10 observations. Hint: simply look at table(coweeta\$species), make a note of which species have more than 10 observations, and take a subset of the dataset with those species (recall the examples in Section 2.3.2, p. 43).
3. Make a scatter plot of biomass versus height, with the symbol colour varying by species. Choose some nice colours, and use filled squares for the symbols. Also add a title to the plot, in italics.
4. Log-transform biomass, and redraw the plot.

### 4.9.5 Superimposed histograms

First inspect the example for the vessel data in Section 4.5.1 (p. 108).

1. $\Delta$ Use a function from the epade package to produce a single plot with both histograms (so that they are superimposed). You need to figure out this function yourself, it is not described in this book

### 4.9.6 Trellis graphics

1. Change the labels in the box and whisker plot (Fig. 4.26) to indicate the units of $\mathrm{CO}_{2}$ concentration (ppm) and add a label to the x -axis indicating the factor (temperature).

## Chapter 5

## Basic statistics

This book is not an Introduction to statistics. There are many manuals (either printed or on the web) that document the vast array of statistical analyses that can be done with R. To get you started, though, we will show a few very common analyses that are easy to do in $\mathbf{R}$.
In all of the following, we assume you have a basic understanding of linear regression, Student's $t$-tests, ANOVA, and confidence intervals for the mean.

### 5.1 Probability Distributions

As we assume you have completed an Introduction to statistics course, you have already come across several probability distributions. For example, the Binomial distribution is a model for the distribution of the number of successes in a sequence of independent trials, for example, the number of heads in a coin tossing experiment. Another commonly used discrete distribution is the Poisson, which is a useful model for many kinds of count data. Of course, the most important distribution of all is the Normal or Gaussian distribution.
R provides sets of functions to find densities, cumulative probabilities, quantiles, and to draw random numbers from many important distributions. The names of the functions all consist of a one letter prefix that specifies the type of function and a stem which specifies the distribution. Look at the examples in the table below.

prefix	function
d	density
p	cumulative probabilities
q	quantiles
r	simulate


stem	distribution
binom	Binomial
pois	Poisson
norm	Normal
t	Student's t
chisq	$\chi^{2}$
f	F

So for example,

```
Calculate the probability of 3 heads out of 10 tosses of a fair coin.
This is a (d)ensity of a (binom)ial distribution.
dbinom(3, 10, 0.5)
[1] 0.1171875
Calculate the probability that a normal random variable (with
```

```
mean of 3 and standard deviation of 2) is less than or equal to 4.
This is a cumulative (p)robability of a (norm)al variable.
pnorm(4, 3, 2)
[1] 0.6914625
Find the t-value that corresponds to a 2.5% right-hand tail probability
with 5 degrees of freedom.
This is a (q)uantile of a (t)distribution.
qt(0.975, 5)
[1] 2.570582
Simulate 5 Poisson random variables with a mean of 3.
This is a set of (r)andom numbers from a (pois)son distribution.
rpois(5, 3)
[1] 1
```

See the help page ?Distributions for more details.
To make a quick plot of a distribution, we already saw the use of the density function in combination with curve in Section 4.3.3. Here is another example (this makes Fig. 5.1).

```
A standard normal distribution
curve(dnorm(x, sd=1, mean=0), from=-3, to=3,
 ylab="Density", col="blue")
Add a t-distribution with 3 degrees of freedom.
curve(dt(x, df=3), from =-3, to=3, add=TRUE, col="red")
Add a legend (with a few options, see ?legend)
legend("topleft", c("Standard normal","t-distribution, df=3"), lty=1, col=c("blue","red"),
 bty='n', cex=0.8)
```

Try this yourself Make a histogram (recall Section 4.3.3) of a sample of random numbers from a distribution of your choice.

### 5.2 Descriptive Statistics

Descriptive statistics summarise some of the properties of a given data set. Generally, we are interested in measures of location (central tendency, such as mean and median) and scale (variance or standard deviation). Other descriptions can include the sample size, the range, and so on. We already encountered a number of functions that can be used to summarize a vector.

Let's look at some examples for the Pupae dataset (described in Section A.6).

```
Read data
pupae <- read.csv("pupae.csv")
Extract the weights (for convenience)
weight <- pupae$PupalWeight
Find the number of observations
length(weight)
```



Figure 5.1: Two univariate distributions plotted with curve()

```
[1] }8
Find the average (mean) weight
mean(weight)
[1] 0.3110238
Find the Variance
var(weight)
[1] 0.004113951
```

Note that $\mathbf{R}$ will compute the sample variance (not the population variance). The standard deviation can be calculated as the square root of the variance, or use the sd function directly.

```
Standard Deviation
var.wgt <- var(weight)
sqrt(var.wgt)
[1] 0.06414009
Standard Deviation
sd(weight)
[1] 0.06414009
```

Robust measures of the location and scale are the median and inter-quartile range; $\mathbf{R}$ has functions for these.

```
median and inter-quartile range
median(weight)
```

\#\# [1] 0.2975
IQR(weight)
\#\# [1] 0.09975
The median is the 50th percentile or the second quartile. The quantile function can compute quartiles as well as arbitrary percentiles/quantiles.

```
quantile(weight)
0% 25% 50% 75% 100%
0.17200 0.25625 0.29750 0.35600 0.47300
quantile(weight, probs=seq(0,1,0.1))
```




```
0.1720 0.2398 0.2490 0.2674 0.2892 0.2975 0.3230 0.3493 0.3710 0.3910
```


## 0.1720 0.2398 0.2490 0.2674 0.2892 0.2975 0.3230 0.3493 0.3710 0.3910

## 100%

## 100%

## 0.4730

```
0.4730
```

Missing Values: All of the above functions will return nA if the data contains any missing values. However, they also provide an option to remove missing values (NAs) before their computations (see also Section 3.4).

```
weightNA <- weight
weightNA[40] <- NA
mean(weightNA)
[1] NA
mean(weightNA, na.rm=TRUE)
[1] 0.3113373
```

The summary function provides a lot of the above information in a single command:
summary (weight)

\#\#	Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
\#\#	0.1720	0.2562	0.2975	0.3110	0.3560	0.4730

The moments package provides 'higher moments' if required, for example, the skewness and kurtosis.

```
load the moments package
library(moments)
skewness(weight)
[1] 0.3851656
kurtosis(weight)
[1] 2.579144
```

The pastecs package includes a useful function that calculates many descriptive statistics for numeric vectors, including the standard error for the mean (for which $\mathbf{R}$ has no built-in function).

```
library(pastecs)
see ?stat.desc for description of the abbreviations
stat.desc(weight)
\begin{tabular}{lrrrrr}
\#\# & nbr.val & nbr.null & nbr.na & min & max \\
\#\# 84.000000000 & 0.000000000 & 0.000000000 & 0.172000000 & 0.473000000 \\
\#\# & range & sum & median & mean & SE.mean
\end{tabular}
```

```
0.301000000 26.126000000 0.297500000 0.311023810
CI.mean.0.95 var std.dev coef.var
0.013919253 0.004113951 0.064140091 0.206222446
conveniently, the output is a character vector which we can index by name,
for example extracting the standard error for the mean
stat.desc(weight) ["SE.mean"]
```

```
SE.mean
```


## SE.mean

## 0.006998258

```

Sometimes you may wish to calculate descriptive statistics for subgroups in the data. We will come back to this extensively in Section 6.2, but here is a quick introduction.

The function tapply allows you to apply any function to subgroups defined by a second (grouping) variable, as we will see in Chapter 6.
```


# tapply

with(pupae, tapply(PupalWeight, Gender, mean))
\#\# $0 \quad 1$

## 0.2724884 0.3512857

```

\subsection*{5.3 Inference for a single population}

Inference is answering questions about population parameters based on a sample. The mean of a random sample from a population is an estimate of the population mean. Since it is a single number it is called a point estimate. It is often desirable to estimate a range within which the population parameter lies with high probability. This is called a confidence interval.

One way to get confidence intervals in \(\mathbf{R}\) is to use the quantile functions for the relevant distribution. Remember from your introductory statistics course that a \(100(1-\alpha) \%\) confidence interval for the mean on normal population is given by,
\[
\bar{x} \pm t_{\alpha / 2, n-1} \frac{s}{\sqrt{n}}
\]
where \(\bar{x}\) is the sample mean, \(s\) the sample standard deviation and \(n\) is the sample size. \(t_{\alpha / 2, n-1}\) is the \(\alpha / 2\) tail point of a \(t\)-distribution on \(n-1\) degrees of freedom. That is, if \(T\) has a \(t\)-distribution on \(n-1\) degrees of freedom.
\[
P\left(T \leq t_{\alpha / 2, n-1}\right)=1-\alpha / 2
\]

The \(\mathbf{R}\) code for this confidence interval can be written as,
```

alpha <- 0.05 \# 95% confidence interval
xbar <- mean(weight)
s <- sd(weight)
n <- length(weight)
half.width <- qt(1-alpha/2, n-1)*s/sqrt(n)

# Confidence Interval

c(xbar - half.width, xbar + half.width)

## [1] 0.2971046 0.3249431

```

Here, we assumed a normal distribution for the population. You may have been taught that if \(n\) is large, say \(n>30\), then you can use a normal approximation. That is, replace qt (\(1-\mathrm{alpha} / 2, \mathrm{n}-1\)) with qnorm (1-alpha/2), but there is no need, \(\mathbf{R}\) can use the \(t\)-distribution for any \(n\) (and the results will be the same, as the \(t\)-distribution converges to a normal distribution when the df is large).

Try this yourself Confirm that the \(t\)-distribution converges to a normal distribution when \(n\) is large (using qt and qnorm).

\section*{Hypothesis testing}

There may be a reason to ask whether a dataset is consistent with a certain mean. For example, are the pupae weights consistent with a population mean of 0.29 ? For normal populations, we can use Student's \(t\)-test, available in \(\mathbf{R}\) as the \(t\).test function. Let's test the null hypothesis that the population mean is 0.29 :
```

t.test(weight, mu=0.29)

## 

## One Sample t-test

## 

## data: weight

## t = 3.0041, df = 83, p-value = 0.00352

## alternative hypothesis: true mean is not equal to 0.29

## 95 percent confidence interval:

## 0.2971046 0.3249431

## sample estimates:

## mean of x

## 0.3110238

```

Note that we get the \(t\)-statistic, degrees of freedom (\(n-1\)) and a p-value for the test, with the specified alternative hypothesis (not equal, i.e. two-sided). In addition, t. test gives us a \(95 \%\) confidence interval (compare to the above), and the estimated mean, \(\bar{x}\).

We can use t.test to get any confidence interval, and/or to do one-sided tests,
```

t.test(weight, mu=0.29, conf.level=0.90)

## 

## One Sample t-test

## 

## data: weight

## t = 3.0041, df = 83, p-value = 0.00352

## alternative hypothesis: true mean is not equal to 0.29

## 90 percent confidence interval:

## 0.2993828 0.3226649

## sample estimates:

## mean of x

## 0.3110238

t.test(weight, mu=0.29, alternative="greater", conf.level=0.90)

## 

## One Sample t-test

## 

## data: weight

## t = 3.0041, df = 83, p-value = 0.00176

```
```


## alternative hypothesis: true mean is greater than 0.29

## 90 percent confidence interval:

## 0.3019832 Inf

## sample estimates:

## mean of x

## 0.3110238

```

Note that the confidence interval is one-sided when the test is one-sided.
The \(t\).test is appropriate for data that is approximately normally distributed. You can check this using a histogram or a QQ-plot (see Sections 4.3.3 and ??). If the data is not very close to a normal distribution then the \(t\).test is often still appropriate, as long as the sample is large.

If the data is not normal and the sample size is small, there are a couple of alternatives: transform the data (often a log transform is enough) or use a nonparametric test, in this case the Wilcoxon signed rank test. We can use the wilcox.test function for the latter, its interface is similar to t.test and it tests the hypothesis that the data is symmetric about the hypothesized population mean. For example,
```

wilcox.test(weight, mu=0.29)

## 

## Wilcoxon signed rank test with continuity correction

## 

## data: weight

## V = 2316.5, p-value = 0.009279

## alternative hypothesis: true location is not equal to 0.29

wilcox.test(weight, mu=0.29, alternative="greater")

## 

## Wilcoxon signed rank test with continuity correction

## 

## data: weight

## V = 2316.5, p-value = 0.004639

## alternative hypothesis: true location is greater than 0.29

```

\section*{Test for proportions}

Sometimes you want to test whether observed proportions are consistent with a hypothesized population proportion. For example, consider a coin tossing experiment where you want to test the hypothesis that you have a fair coin (one with an equal probability of landing heads or tails). In your experiment, you get 60 heads out of 100 coin tosses. Do you have a fair coin? We can use the prop.test function:
```


# 60 'successes' out of a 100 trials, the hypothesized probability is 0.5.

prop.test(x=60, n=100, p=0.5)

## 

## 1-sample proportions test with continuity correction

## 

## data: 60 out of 100, null probability 0.5

## X-squared = 3.61, df = 1, p-value = 0.05743

## alternative hypothesis: true p is not equal to 0.5

## 95 percent confidence interval:

## 0.4970036 0.6952199

## sample estimates:

## p

## 0.6

```
```


# Same as above, but for a one-sided test.

prop.test(60, 100, p=0.5, alternative="greater")

## 

## 1-sample proportions test with continuity correction

## 

## data: 60 out of 100, null probability 0.5

## X-squared = 3.61, df = 1, p-value = 0.02872

## alternative hypothesis: true p is greater than 0.5

## 95 percent confidence interval:

## 0.5127842 1.0000000

## sample estimates:

## p

## 0.6

```

Note: You might think that I chose to do a one-sided test greater because 60 is greater than the expected number of 50 for a fair coin - I didn't! Don't use your data to decide on the null or alternative hypothesis - it renders the \(p\)-values meaningless.

\subsection*{5.4 Inference for two populations}

Commonly, we wish to compare two (or more) populations. For example, the pupae dataset has pupal weights for female and male pupae. We may wish to compare the weights of males (gender=o) and females (gender=1).
There are two ways to use t.test to compare the pupal weights of males and females. In the first method, we make two vectors,
```

pupae <- read.csv("pupae.csv")
weight <- pupae$PupalWeight
gender <- pupae$Gender
weight.male <- weight[gender==0]
weight.female <- weight[gender==1]

# We will assume equal variance for male and female pupae (see Unequal variances, below):

t.test(weight.male, weight.female, var.equal=TRUE)

## 

## Two Sample t-test

## 

## data: weight.male and weight.female

## t = -7.3571, df = 76, p-value = 1.854e-10

## alternative hypothesis: true difference in means is not equal to 0

## 95 percent confidence interval:

## -0.10012896 -0.05746573

## sample estimates:

## mean of x mean of y

## 0.2724884 0.3512857

```

Try this yourself Confirm that there are missing data in both variables in the example above. The default action is to omit all missing values (see description under na.action in the help file ?t.test).

There is also a formula interface for \(t\).test. The formula interface is important because we will use
it in many other functions, like linear regression and linear modelling. For the \(t\).test we can use the formula interface on the extracted variables, or without extracting the variables.
```


# Using the vectors we constructed in the previous example

t.test(weight ~ gender, var.equal=TRUE)

## 

## Two Sample t-test

## 

## data: weight by gender

## t = -7.3571, df = 76, p-value = 1.854e-10

## alternative hypothesis: true difference in means is not equal to 0

## 95 percent confidence interval:

## -0.10012896 -0.05746573

## sample estimates:

## mean in group 0 mean in group 1

## 0.2724884 0.3512857

# Or by specifying the data= argument.

t.test(PupalWeight~Gender, data=pupae, var.equal=TRUE)

## 

## Two Sample t-test

## 

## data: PupalWeight by Gender

## t = -7.3571, df = 76, p-value = 1.854e-10

## alternative hypothesis: true difference in means is not equal to 0

## 95 percent confidence interval:

## -0.10012896 -0.05746573

## sample estimates:

## mean in group 0 mean in group 1

## 0.2724884 0.3512857

```

\section*{Paired data}

The \(t\).test can also be used when the data are paired, for example, measurements taken before and after some treatment on the same subjects. The pulse dataset is an example of paired data (see Section A.9). We will compare pulse rates before and after exercise, including only those subjects that exercised (Ran=1),
```

pulse <- read.table("ms212.txt", header=TRUE)
pulse.before <- with(pulse, Pulse1[Ran==1])
pulse.after <- with(pulse, Pulse2[Ran==1])
t.test(pulse.after, pulse.before, paired=TRUE)

## 

## Paired t-test

## 

## data: pulse.after and pulse.before

## t = 16.527, df = 45, p-value < 2.2e-16

## alternative hypothesis: true difference in means is not equal to 0

## 95 percent confidence interval:

## 45.12843 57.65418

## sample estimates:

## mean of the differences

## 51.3913

```

\section*{Unequal variances}

The default for the two-sample t.test is actually to not assume equal variances. The theory for this kind of test is quite complex, and the resulting \(t\)-test is now only approximate, with an adjustment called the 'Satterthwaite' or 'Welch' approximation made to the degrees of freedom.
```

t.test(PupalWeight ~ Gender, data=pupae)

## 

## Welch Two Sample t-test

## 

## data: PupalWeight by Gender

## t = -7.4133, df = 74.628, p-value = 1.587e-10

## alternative hypothesis: true difference in means is not equal to 0

## 95 percent confidence interval:

## -0.09997364 -0.05762104

## sample estimates:

## mean in group 0 mean in group 1

## 0.2724884 0.3512857

```

Since this modified \(t\)-test makes fewer assumptions, you could ask why we ever use the equal variances form. If the assumption is reasonable, then this (equal variances) form will have more power, i.e. will reject the null hypothesis more often when it is actually false.

\section*{Assumed normality}

The two-sample \(t\)-test assumes normality of the data (which you can check using a histogram or a QQ-plot) or that the sample sizes are large enough that the central limit theorem applies. Note that the paired \(t\)-test assumes only that the differences are normal. The wilcox.test can be used when any of these assumptions are suspect. In the case of two samples (unpaired), this test used is called the Wilcoxon rank sum test (also known as the Mann-Whitney test).
```

wilcox.test(pulse.after, pulse.before, paired=TRUE, exact=FALSE)

## 

## Wilcoxon signed rank test with continuity correction

## 

## data: pulse.after and pulse.before

## V = 1081, p-value = 3.624e-09

## alternative hypothesis: true location shift is not equal to 0

wilcox.test(PupalWeight ~ Gender, data=pupae, exact=FALSE)

## 

## Wilcoxon rank sum test with continuity correction

## 

## data: PupalWeight by Gender

## W = 152.5, p-value = 1.704e-09

## alternative hypothesis: true location shift is not equal to 0

```

\subsection*{5.4.1 Power}

When testing a hypothesis, remember that there are two types of possible errors, due to the random nature of sampling data. These are the "Type 1 error" (rejecting the null hypothesis when it is actually
true), and the "Type 2 error" (failing to reject the null when it is actually false). The probability of a Type 1 error is controlled by \(\alpha\), the threshold on the \(p\)-value. The \(p\)-value is the probability of observing the test statistic, if the null hypothesis is actually true. So by keeping \(\alpha\) small (for some reason, 0.05 is most commonly used), we control the chance of a Type 1 error.
Statistical power is defined as 1 - the probability of a Type 2 error. Or in other words, the probability that we reject the null hypothesis when it is actually false. Consider the situation where we compare the means of two samples. It is easy to see that our power depends not only on \(\alpha\), but also on the actual difference in means of the populations that the samples were drawn from. If they are very different, it will be easier to find a significant difference. So, to calculate the power we must specify how different the means are under the alternative hypothesis.

For a \(t\)-test, we can use the power.t.test function to calculate the power. To approximate the power for the pupal weight \(t\)-test (as we saw in the previous section), we can use the following,
```

power.t.test(n=35, delta=0.08, sd=0.05, sig.level=0.05)

## 

## Two-sample t test power calculation

## 

## 

## 

## 

## 

## 

## 

alternative = two.sided

## 

## NOTE: n is number in *each* group

```

Here we have assumed equal groups of size 35 for each gender (although this is not exactly correct), a true difference in mean weights of 0.08 , and a standard deviation of 0.05 . The power is over \(99 \%\), meaning that, with these conditions, we will be able to reject the null hypothesis \(99 \%\) of the time.

We can also calculate the required sample size, if we wish to attain a certain power. For example, suppose we want to detect a difference of 0.02 with \(75 \%\) power. What sample size do we need?
```

power.t.test(delta=0.02, sd=0.05, sig.level=0.05, power=0.75)

## 

## Two-sample t test power calculation

## 

## n = 87.7248

## delta = 0.02

## sd = 0.05

## sig.level = 0.05

            power = 0.75
    alternative = two.sided

## 

## 

## NOTE: n is number in *each* group

```

We would need 88 observations for each gender.
Try this yourself Using power.t.test as in the examples above, see what happens when you set \(\alpha\) (sig.level) to 0.01 or 0.1. Decide for yourself if the result makes sense.

Figure 5.2: Quick inspection of the allometry data, before we perform a linear regression.

\subsection*{5.5 Simple linear regression}

To fit linear models of varying complexity, we can use the 1 lm function. The simplest model is a straightline relationship between an \(x\) and a \(y\) variable. In this situation, the assumption is that the \(y\)-variable (the response) is a linear function of the \(x\)-variable (the independent variable), plus some random noise or measurement error. For the simplest case, both \(x\) and \(y\) are assumed to be continuous variables. In statistical notation we write this as,
\[
\begin{equation*}
y=\alpha+\beta x+\varepsilon \tag{5.1}
\end{equation*}
\]

Here \(\alpha\) and \(\beta\) are (population) parameters that need to be estimated from the data. The error (\(\epsilon\)) is assumed to follow a normal distribution with a mean of zero, and a standard deviation of \(\sigma\). It is also assumed that \(\sigma\) is constant and does not depend on \(x\).

Let's look at an example using the allometry data (see Fig. 5.2),
```


# Read data

allom <- read.csv("Allometry.csv")
plot(leafarea~diameter, data=allom)

```

We can see from this plot that leaf area generally increases with tree diameter. So we can use 1 m to estimate the parameters in equation 5.1 , or in other words to 'fit the model'.
```


# Fit linear regression of 'leafarea' on 'diameter',

# Results are stored in an object called model

model <- lm(leafarea~diameter, data=allom)

# Print a summary of the regression:

summary(model)

```
```


## 

## Call:

## lm(formula = leafarea ~ diameter, data = allom)

## 

## Residuals:

\#\#	Min	1Q	Median	3Q	Max
\#\#	-112.057	-40.519	4.699	30.344	201.377

## 

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -51.3245 15.9746 -3.213 0.0021 **

## diameter 4.6333 0.3955 11.716 <2e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## 

## Residual standard error: 60.16 on 61 degrees of freedom

## Multiple R-squared: 0.6923,Adjusted R-squared: 0.6873

## F-statistic: 137.3 on 1 and 61 DF, p-value: < 2.2e-16

# Or just the coefficients (intercept and slope):

coef (model)

## (Intercept) diameter

## -51.324479 4.633321

```

As you can see, lm uses the formula interface that we discussed earlier (it always has the form \(\mathrm{y} \sim \mathrm{x}\)).
The summary function prints a lot of information about the fit. In this case, it shows that the intercept is -51.324 , which is the predicted leaf area for a tree with diameter of zero (not very useful in this case).
It also shows a standard error and a \(t\)-statistic for this intercept, along with a \(p\)-value which shows that the intercept is significantly different from zero. The second line in the coefficients table shows the slope is 4.633, and that this is highly significantly different from zero.
In addition, we have a Residual standard error of 60.16 , which is an estimate of \(\sigma\), and an R -squared of 0.69 (which is the squared correlation coefficient). Finally, the F-statistic says whether the overall fit is significant, which in this case, is the same as the test for \(\beta\) (because in this situation, the \(F\)-statistic is simply the square of the \(t\)-statistic).

It is straightforward to add the regression line to an existing plot (Fig. 5.3). Simply use abline and the model object we created previously:
```

plot(leafarea~diameter, data=allom)

```
abline(model)

\subsection*{5.5.1 Diagnostic plots}

There are many ways to examine how well a model fits the data, and this step is important in deciding whether the model is appropriate. Most diagnostics are based on the residuals, the difference between the \(\hat{y}=\hat{\alpha}+\hat{\beta} x\) fitted values and the actual data points.

If needed, the fitted values and residuals can be extracted using fitted(model) and residuals (model) respectively.
The two simplest and most useful diagnostic plots are the scale-location plot and a QQ-plot of the residuals. These can be produced with plot, but we much prefer two functions from the car package, as shown by the following example (Fig. 5.4):

Figure 5.3: The allometry data, with an added regression line.
```

model <- lm(leafarea ~ diameter, data=allom)
library(car)

## Loading required package: carData

residualPlot(model)
qqPlot(model)

```
\#\# [1] 4147
The scale-location plot shows the square root of the standardized residuals against the fitted values. In an ideal situation, there should be no structure in this plot. Any curvature indicates that the model is under- or over-fitting, and a general spread-out (or contracting) from left to right indicates nonconstant variance ('heteroscedasticity'). The QQ-plot enables us to check for departures from normality. Ideally, the standardized residuals should lie on a straight line.
Some departure from the straight line is to be expected though, even when the underlying distribution is really normal. The qqPlot function from the car package enhances the standard QQ-plot, by including a confidence interval (Fig 5.5). In this case, there is some evidence of heteroscedasticity, and possibly curvature.
The following code makes the QQ-plot and a plot of the data on a log-log scale (Fig. 5.5).
```

library(car)
qqPlot(model)

## [1] 41 47

plot(leafarea ~ diameter, data=allom, log="xy")

```


Figure 5.4: Two standard diagnostic plots for a fitted Im object.

Figure 5.5: A plot of the Allometry data on a log-log scale.

On a log-log scale, it looks like the variance is much more constant, and the relationship is more linear. So, we go ahead and refit the model to log-transformed variables.

As we can see in Fig. 5.5, the diagnostic plots look much better, except for a couple of points at the lower left corner of the QQ-plot. Notice that these outliers have been marked with their row number from the dataframe.

The following code produces Fig. 5.6, including diagnostic plots and a plot of the data with a regression line added. Note that the abline function will only work as intended (shown before) on the log-log plot if we use \(\log\) to the base \(10(\log 10)\), in the model fit.
```

model_log <- lm(log10(leafarea) ~log10(diameter), data=allom)
summary(model_log)

## 

## Call:

## lm(formula = log10(leafarea) ~ log10(diameter), data = allom)

## 

## Residuals:

## Min 1Q Median 3Q Max

## -1.10384 -0.14155 0.02161 0.15434 0.52455

## 

## Coefficients:

## Estimate Std. Error t value Pr}(>|t|

## (Intercept) -0.4468 0.1600 -2.793 0.00697 **

## log10(diameter) 1.5387 0.1070 14.385 < 2e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## 

## Residual standard error: 0.2611 on 61 degrees of freedom

## Multiple R-squared: 0.7723,Adjusted R-squared: 0.7686

## F-statistic: 206.9 on 1 and 61 DF, p-value: < 2.2e-16

residualPlot(model_log)
qqPlot(model_log)

## [1] 3 32

plot(leafarea~diameter, data=allom, log="xy")
abline(model_log)

```

Try this yourself The residuals of a linear model fit can be extracted with the residuals function. For one of the linear models from the above examples, extract the residuals, and make a histogram to help inspect normality of the residuals.

Figure 5.6: Diagnostic plots for the allometry data, refitted on a log-log scale (left panels). The allometry data fitted on a log-log scale, with the regression line (right panel).

\subsection*{5.6 Functions used in this chapter}

For functions not listed here, please refer to the index at the end of this book.
\begin{tabular}{|c|c|c|}
\hline Function & What it does & Example use \\
\hline abline & Adds a straight line to an existing plot. For a vertical line, use \(v\) and an \(x\) value. For a horizontal line, use \(h\) and a \(y\) value. To add a sloped line, give a slope (a), and an intercept (b). Can also be passed a linear model object, see Section 5.5 . & abline (v=5) \\
\hline curve & Can be used to plot curves, or to add a curve to an existing plot. The first argument can be either a function or an expression that evaluates to a curve. To specify the range of the curve, use from and to. Use add=TRUE to add a curve to an existing plot. & \[
\begin{aligned}
& \text { curve }(\cos (x) \\
& \quad \text { from }=0, \text { to }=2 * \mathrm{pi})
\end{aligned}
\] \\
\hline kurtosis & From the moments package. Computes Pearson's measure of kurtosis. & \\
\hline length & Returns the total number of elements in its input. & length (LETTERS) \\
\hline 1 m & Fits linear models to data. Requires a formula in the form \(y \sim x\). Also possible to specify data to be used and an na.action. Returns a linear model object, which can be used for further analysis. & See Section 5.5 \\
\hline \(\log\) & Computes natural logarithms (base \(e\)) of its input. For common (base 10) logarithms, use log10. & \(\log (3)\) \\
\hline mean & Returns the arithmetic average of its input. & mean (c \((1,2,3,10)\)) \\
\hline power.t.test & Computes the probability that a given \(t\)-test will accept the null hypothesis even though it is false. See Section 5.4.1. & \[
\begin{aligned}
& \text { power.t.test }(n=35, \\
& \text { delta=0.08, } \\
& \text { sd=0.05, } \\
& \text { sig.level=0.05) }
\end{aligned}
\] \\
\hline prop.test & Tests whether an experimental proportion is equal to a hypothesized proportion. Takes \(x\) (number of successes), \(n\) (total number of trials) and \(p\) (the hypothesized proportion.) Specify what kind of test to use ("two.sided", "less", "greater") using alternative. & \[
\begin{gathered}
\text { prop.test }(x=60, \\
n=100 \\
p=0.5)
\end{gathered}
\] \\
\hline qqPlot & From the car package. Given a linear model object, creates a prettified quantile-quantile plot. & See Section 5.5.1 \\
\hline quantile & Computes the quantiles of given data. Defaults are quartiles, but other sequences can be supplied using probs. & See Section 5.2 \\
\hline residuals & Extracts residuals from a linear model object. & \\
\hline sd & Returns the standard deviation of its input. & sd(c (99, \(85,50,87,89)\)) \\
\hline skewness & From the moments package. Computes the skewness of a sample. & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Function & What it does & Example use \\
\hline summary & Provides a summary of the variables in a dataframe. Statistics are given for numerical variables, and counts are given for factor variables. & summary (warpbreaks) \\
\hline t.test & Computes Student's \(t\)-test for a given sample of data. It is possible to compare two samples, or a single sample to a hypothesized mean (mu). & See Section 5.3 \\
\hline tapply & Used to summarize data in dataframes. Will be discussed further in Chapter 6. & See Section 6.2.1 \\
\hline var & Returns the variance of its input. & \(\operatorname{var}(\mathrm{c}(99,85,50,87,89)\)) \\
\hline wilcox.test & Computes the Wilcoxon test, a nonparametric alternative to \(t\)-tests for small or non-normal samples. Can be used to compare two samples, or a single sample to a hypothesized mean (mu). & See Section 5.3 \\
\hline
\end{tabular}

\subsection*{5.7 Exercises}

In these exercises, we use the following colour codes:
■ Easy: make sure you complete some of these before moving on. These exercises will follow examples in the text very closely.
- Intermediate: a bit harder. You will often have to combine functions to solve the exercise in two steps.
- Hard: difficult exercises! These exercises will require multiple steps, and significant departure from examples in the text.

We suggest you complete these exercises in an \(\mathbf{R}\) markdown file. This will allow you to combine code chunks, graphical output, and written answers in a single, easy-to-read file.

\subsection*{5.7.1 Probabilities}

For this exercise, refer to the tables and examples in Section 5.1 (p. 126).
1. For a normal random variable \(X\) with mean 5.0 , and standard deviation 2.0 , find the probability that \(X\) is less than 3.0.
2. \(\quad\) Find the probability that \(X\) is greater than 4.5.
3. \(\square\) Find the value \(K\) so that \(P(X>K)=0.05\).
4. When tossing a fair coin 10 times, find the probability of seeing no heads (Hint: this is a binomial distribution.)
5. Find the probability of seeing exactly 5 heads.
6. Find the probability of seeing more than 7 heads.

\subsection*{5.7.2 Univariate distributions}
1. \(\square\) Simulate a sample of 100 random data points from a normal distribution with mean 100 and standard deviation 5 , and store the result in a vector.
2. \(\square\) Plot a histogram and a boxplot of the vector you just created (see Section 4.3 .3 on p. 88 and Section 4.3.5 on p. 91).
3. Calculate the sample mean and standard deviation.
4. Calculate the median and interquartile range.
5. Using the data above, test the hypothesis that the mean equals 100 (using t.test).
6. \(\quad\) Test the hypothesis that mean equals 90.
7. Repeat the above two tests using a Wilcoxon signed rank test. Compare the p-values with those from the \(t\)-tests you just did.

\subsection*{5.7.3 More \(t\)-tests}

For this question, use the pupae data (see Section A. 6 on p. 244).
1. \(\square\) Use the t.test function to compare PupalWeight by T_treatment.
2. Repeat above using a Wilcoxon rank sum test.
3. \(\square\) Run the following code to generate some data:
base <- \(\operatorname{rnorm}(20,20,5)\)
\(\mathrm{x}<-\) base \(+\operatorname{rnorm}(20,0,0.5)\)
\(y<-\) base \(+\operatorname{rnorm}(20,1,0.5)\)
4. Using a two-sample \(t\)-test compare the means of \(x\) and \(y\), assume that the variance is equal for the two samples.
5. Repeat the above using a paired \(t\)-test. How has the \(p\)-value changed?
6. Which test is most appropriate?

\subsection*{5.7.4 Simple linear regression}

For this question, use the pupae data (see Section A.6, p. 244). Perform a simple linear regression of Frass on PupalWeight. Produce and inspect the following:
1. - Plots of the data.
2. Summary of the model.
3. \(\square\) Diagnostic plots.
4. All of the above for a subset of the data, where Gender is 0 , and C02_treatment is 400 .

\subsection*{5.7.5 Quantile Quest}

You have already used quantile-quantile (QQ) plots many times, but in this exercise you will get to the bottom of the idea of comparing quantiles of distributions.

As in the previous exercises, we will use the pupae data.
1. \(\square\) From the pupae data, extract the PupalWeight and store it as a vector called 'pupweight'. Make a histogram of this vector, noticing that the distribution seems perhaps quite like the normal distribution.
2. When we say 'quite like the normal distribution', we mean that the overall shape seems similar. Now simulate a histogram like the one above, using rnorm with the mean and standard deviation of the pupal weights (i.e. pupweight), and the same sample size as well. Plot it repeatedly to get an idea of whether the simulated histogram looks similar often enough.
3. Of course a visual comparison like that is not good enough, but it is a useful place to start. We can also compare the quantiles as follows. If we calculate the \(25 \%\) and \(75 \%\) quantiles of pupweight, we are looking for the values below which \(25 \%\) or \(75 \%\) of all observations occur. Clearly if two distributions have the same shape, their quantiles should be roughly similar. Calculate the 25,50 and \(75 \%\) quantiles for pupweight, and also calculate them for the normal distribution using qnorm. Are they similar?
4. \(\triangle\) Now repeat the above exercise, but calculate many quantiles (e.g. from \(2.5 \%\) to \(97.5 \%\) with steps of \(2.5 \%\) or whatever you choose) for both the measured data, and the standard normal distribution. Compare the two with a simple scatter plot, and add a \(1: 1\) line. If you are able to do this, you just made your own QQ-plot (and if not, I suggest you inspect the solutions to this Exercise). Hint: use seq to make the vector of quantiles, and use it both in quantile and qnorm.

Save the results of both those as vectors, and plot. As a comparison, use qqPlot (pupweight, distribution="norm") (car package), make sure to plot the normal quantiles on the X-axis.

\section*{Chapter 6}

\section*{Summarizing, tabulating and merging data}

\subsection*{6.1 Summarizing dataframes}

There are a few useful functions to print general summaries of a dataframe, to see which variables are included, what types of data they contain, and so on. We already looked at some of these in Section 2.2.

The most basic function is summary, which works on many types of objects.
Let's look at the output for the allom dataset.
```

summary(allom)

```
\begin{tabular}{|c|c|c|c|c|}
\hline \#\# & species & diameter & height & leafarea \\
\hline \#\# & PIMO:19 & Min. : 4.83 & Min. : 3.57 & Min. : 2.636 \\
\hline \#\# & PIPO:22 & 1st Qu.:21.59 & 1st Qu.:21.26 & 1st Qu.: 28.581 \\
\hline \#\# & PSME:22 & Median :34.80 & Median :28.40 & Median : 86.351 \\
\hline \#\# & & Mean :35.56 & Mean : 26.01 & Mean : 113.425 \\
\hline \#\# & & 3rd Qu.:51.44 & 3rd Qu.:33.93 & 3rd Qu.:157.459 \\
\hline \#\# & & Max. :73.66 & Max. \(: 44.99\) & Max. \(: 417.209\) \\
\hline \multicolumn{5}{|c|}{branchmass} \\
\hline \#\# & Min. : & 1.778 & & \\
\hline \#\# & 1st Qu.: & 16.878 & & \\
\hline \#\# & Median : & 72.029 & & \\
\hline \#\# & Mean : & 145.011 & & \\
\hline \#\# & 3rd Qu.: & 162.750 & & \\
\hline \#\# & Max. : & . 1182.422 & & \\
\hline
\end{tabular}

For each factor variable, the levels are printed (the species variable, levels PIMO, PIPO and PSME. For all numeric variables, the minimum, first quantile, median, mean, third quantile, and the maximum values are shown.

To simply see what types of variables your dataframe contains (or, for objects other than dataframes, to summarize sort of object you have), use the str function (short for 'structure').
```

str(allom)

## 'data.frame': 63 obs. of 5 variables:

## \$ species : Factor w/ 3 levels "PIMO","PIPO",..: 3 3 3 3 3 3 3 3 3 3 ...

```
```


## \$ diameter : num 54.6 34.8 24.9 28.7 34.8 ...

## \$ height : num 27 27.4 21.2 25 30 ...

## \$ leafarea : num 338.49 122.16 3.96 86.35 63.35 ...

## \$ branchmass: num 410.25 83.65 3.51 73.13 62.39 ...

```

Finally, there are two very useful functions in the Hmisc package (recall how to install and load packages from Section 1.10). The first, describe, is much like summary, but offers slightly more sophisticated statistics.

The second, contents, is similar to str, but does a very nice job of summarizing the factor variables in your dataframe, prints the number of missing variables, the number of rows, and so on.
```


# read data

pupae <- read.csv("pupae.csv")

# Make sure CO2_treatment is a factor (it will be read as a number)

pupae$CO2_treatment <- as.factor(pupae$CO2_treatment)

# Show contents:

library(Hmisc)
contents(pupae)

## 

## Data frame:pupae 84 observations and 5 variables Maximum \# NAs:6

## 

## 

## Levels Storage NAs

## T_treatment 2 integer 0

## CO2_treatment 2 integer 0

## Gender integer 6

## PupalWeight double 0

## Frass double 1

## 

## +--------------+----------------

## |Variable |Levels |

## +-------------+-----------------

## |T_treatment |ambient,elevated|

## +--------------+----------------

## |CO2_treatment|280,400 |

## +-------------+-----------------

```

Here, storage refers to the internal storage type of the variable: note that the factor variables are stored as 'integer', and other numbers as 'double' (this refers to the precision of the number).

Try this yourself Use the describe function from the Hmisc package on the allometry data, and compare the output to summary.

\subsection*{6.2 Making summary tables}

\subsection*{6.2.1 Summarizing vectors with tapply()}
If we have the following dataset called plantdat,
\begin{tabular}{|l|l|l|}
\hline PlantID & Treatment & Plantbiomass \\
\hline 1 & Control & 2.0 \\
\hline 2 & Control & 2.2 \\
\hline 3 & Fertilized & 3.2 \\
\hline 4 & Fertilized & 3.6 \\
\hline 5 & Irrigated & 2.8 \\
\hline 6 & Irrigated & 3.0 \\
\hline
\end{tabular} \begin{tabular}{l}
and execute the command \\
with (plantdat, tapply (Plantbiomass, Treatment, mean)) \\
we get the result \\
\begin{tabular}{|l|l|l|}
\hline Control & Fertilized & Irrigated \\
\hline 2.1 & 3.4 & 2.9 \\
\hline
\end{tabular}
\end{tabular} \begin{tabular}{l}
\\
\hline
\end{tabular}

Note that the result is a vector (elements of a vector can have names, like columns of a dataframe).

\section*{If we have the following dataset called plantdat2,}
\begin{tabular}{|l|l|l|}
\hline Treatment & Species & Plantbiomass \\
\hline Control & A & 2.0 \\
\hline Control & A & 2.2 \\
\hline Control & B & 2.3 \\
\hline Control & B & 2.1 \\
\hline Fertilized & A & 3.2 \\
\hline Fertilized & A & 3.6 \\
\hline Fertilized & B & 3.8 \\
\hline Fertilized & B & 4.0 \\
\hline Irrigated & A & 2.8 \\
\hline Irrigated & A & 3.0 \\
\hline Irrigated & B & 2.9 \\
\hline Irrigated & B & 3.6 \\
\hline
\end{tabular}
and execute the command
```

with(plantdat2, tapply(Plantbiomass, list(Species, Treatment), mean))

```
we get the result
\begin{tabular}{|l|l|l|l|}
\hline & Control & Fertilized & Irrigated \\
\hline A & 2.1 & 3.4 & 2.90 \\
\hline B & 2.2 & 3.9 & 3.25 \\
\hline
\end{tabular}

Note that the result here is a matrix, where A and B, the species codes, are the rownames of this matrix.

Often, you want to summarize a variable by the levels of another variable. For example, in the rain data (see Section A.4), the Rain variable gives daily values, but we might want to calculate annual sums,
```


# Read data

rain <- read.csv("Rain.csv")

```
```


# Annual rain totals.

with(rain, tapply(Rain, Year, FUN=sum))

\#\#	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
\#\#	717.2	640.4	905.4	1021.3	693.5	791.5	645.9	691.8	709.5	678.2

```

The tapply function applies a function (sum) to a vector (Rain), that is split into chunks depending on another variable (Year).
We can also use the tapply function on more than one variable at a time. Consider these examples on the pupae data.
```


# Read data

pupae <- read.csv("pupae.csv")

# Average pupal weight by CO2 and T treatment:

with(pupae, tapply(PupalWeight, list(CO2_treatment, T_treatment), FUN=mean))

## ambient elevated

## 280 0.2900000 0.30492

## 400 0.3419565 0.29900

# Further split the averages, by gender of the pupae.

with(pupae, tapply(PupalWeight, list(CO2_treatment, T_treatment, Gender), FUN=mean))

## , , 0

## 

## ambient elevated

## 280 0.251625 0.2700000

## 400 0.304000 0.2687143

## 

## , , 1

## 

## ambient elevated

## 280 0.3406000 0.3386364

## 400 0.3568333 0.3692857

```

As the examples show, the tapply function produces summary tables by one or more factors. The resulting object is either a vector (when using one factor), or a matrix (as in the examples using the pupae data).

The limitations of tapply are that you can only summarize one variable at a time, and that the result is not a dataframe.

The main advantage of tapply is that we can use it as input to barplot, as the following example demonstrates (Fig. 6.1)
```


# Pupal weight by CO2 and Gender. Result is a matrix.

pupm <- with(pupae, tapply(PupalWeight, list(CO2_treatment,Gender),
mean, na.rm=TRUE))

# When barplot is provided a matrix, it makes a grouped barplot.

# We specify xlim to make some room for the legend.

barplot(pupm, beside=TRUE, legend.text=TRUE, xlim=c(0,8),
xlab="Gender", ylab="Pupal weight")

```


Figure 6.1: A grouped barplot of average pupal weight by CO 2 and Gender for the pupae dataset. This is easily achieved via the use of tapply.

\subsection*{6.2.2 Summarizing dataframes with summaryBy}
\begin{tabular}{l}
\hline \begin{tabular}{l}
If we have the following dataset called plantdat, \\
\begin{tabular}{|l|l|l|}
\hline PlantID & Treatment & Plantbiomass \\
\hline 1 & Control & 2.0 \\
\hline 2 & Control & 2.2 \\
\hline 3 & Fertilized & 3.2 \\
\hline 4 & Fertiized & 3.6 \\
\hline 5 & lrigated & 2.8 \\
\hline 6 & lrigated & 3.0 \\
\hline and execute the command \\
\hline
\end{tabular} \\
\begin{tabular}{l}
library (doBy) \\
summaryBy (Plantbiomass \(\sim\) \\
\hline
\end{tabular} \\
\begin{tabular}{l}
we get the result \\
\hline \begin{tabular}{|l|l|}
\hline Treatment & Plantbiomass.mean \\
\hline Control & 2.1 \\
\hline Fertilized & 3.4 \\
\hline irigated & 2.9 \\
\hline Note that the result here is a dataframe. \\
\hline
\end{tabular} \\
\hline
\end{tabular} \\
\hline
\end{tabular} \\
\hline
\end{tabular}

If we have the following dataset called plantdat2,
\begin{tabular}{|l|l|l|}
\hline Treatment & Species & Plantbiomass \\
\hline Control & A & 2.0 \\
\hline Control & A & 2.2 \\
\hline Control & B & 2.3 \\
\hline Control & B & 2.1 \\
\hline Fertilized & A & 3.2 \\
\hline Fertilized & A & 3.6 \\
\hline Fertilized & B & 3.8 \\
\hline Fertilized & B & 4.0 \\
\hline Irrigated & A & 2.8 \\
\hline Irrigated & A & 3.0 \\
\hline Irrigated & B & 2.9 \\
\hline Irrigated & B & 3.6 \\
\hline
\end{tabular}
and execute the command
```

summaryBy(Plantbiomass ~ Species + Treatment, FUN=mean, data=dfr)

```
we get the result
\begin{tabular}{|l|l|l|}
\hline Species & Treatment & Plantbiomass.mean \\
\hline A & Control & 2.1 \\
\hline A & Fertilized & 3.4 \\
\hline A & Irrigated & 2.9 \\
\hline B & Control & 2.2 \\
\hline B & Fertilized & 3.9 \\
\hline B & Irrigated & 3.25 \\
\hline
\end{tabular}

Note that the result here is a dataframe.
In practice, it is often useful to make summary tables of multiple variables at once, and to end up with a dataframe. In this book we use summaryBy, from the doBy package, to achieve this. (We ignore the aggregate function in base \(\mathbf{R}\), because summaryBy is much easier to use).

With summaryBy, we can generate multiple summaries (mean, standard deviation, etc.) on more than one variable in a dataframe at once. We can use a convenient formula interface for this. It is of the form,
```

summaryBy(Yvar1 + Yvar2 ~ Groupvar1 + Groupvar2, FUN=c(mean,sd), data=mydata)

```
where we summarize the (numeric) variables Yvar1 and Yvar2 by all combinations of the (factor) variables Groupvar1 and Groupvar2.
```


# Load the doBy package

library(doBy)

# read pupae data if you have not already

pupae <- read.csv("pupae.csv")

# Get mean and standard deviation of Frass by CO2 and T treatments

summaryBy(Frass ~ CO2_treatment + T_treatment,
data=pupae, FUN=c(mean,sd))

\#\#	CO2_treatment	T_treatment	Frass.mean	Frass.sd
\#\# 1	280	ambient	NA	NA
\#\# 2	280	elevated	1.479520	0.2387150
\#\# 3	400	ambient	2.121783	0.4145402
\#\# 4	400	elevated	1.912045	0.3597471

```
```


# Note that there is a missing value. We can specify na.rm=TRUE,

# which will be passed to both mean() and sd(). It works because those

# functions recognize that argument (i.e. na.rm is NOT an argument of

# summaryBy itself!)

summaryBy(Frass ~ CO2_treatment + T_treatment,
data=pupae, FUN=c(mean,sd), na.rm=TRUE)

## CO2_treatment T_treatment Frass.mean Frass.sd

## 1 280 ambient 1.953923 0.4015635

## 2 280 elevated 1.479520 0.2387150

## 3 400 ambient 2.121783 0.4145402

## 4 400 elevated 1.912045 0.3597471

# However, if we use a function that does not recognize it, we first have to

# exclude all missing values before making a summary table, like this:

pupae_nona <- pupae[complete.cases(pupae),]

# Get mean and standard deviation for

# the pupae data (Pupal weight and Frass), by CO2 and T treatment.

# Note that length() does not recognize na.rm (see ?length), which is

# why we have excluded any NA from pupae first.

summaryBy(PupalWeight+Frass ~ CO2_treatment + T_treatment,
data=pupae_nona,
FUN=c(mean,sd,length))

\#\#	CO2_treatment	T_treatment	PupalWeight.mean	Frass.mean	PupalWeight.sd
\#\# 1	280	ambient	0.2912500	1.957333	0.04895847
\#\# 2	280	elevated	0.3014583	1.473167	0.05921000
\#\# 3	400	ambient	0.3357000	2.103250	0.05886479
\#\# 4	400	elevated	0.3022381	1.931000	0.06602189

## Frass.sd PupalWeight.length Frass.length

## 1 0.4192227 12 12

## 2 0.2416805 24 24

## 3 0.4186310 20 20

## 4 0.3571969 21 21

```

You can also use any function that returns a vector of results. In the following example we calculate the \(5 \%\) and \(95 \%\) quantiles of all numeric variables in the allometry dataset. To do this, use . for the left-hand side of the formula.
```


# . ~ species means 'all numeric variables by species'.

# Extra arguments to the function used (in this case quantile) can be set here as well,

# they will be passed to that function (see ?quantile).

summaryBy(. ~ species, data=allom, FUN=quantile, probs=c(0.05, 0.95))

```
\begin{tabular}{lrrrrrr}
\#\# & \multicolumn{2}{l}{ species diameter.5\% } & diameter.95\% & height. \(5 \%\) & height. \(95 \%\) & leafarea. \(5 \%\) \\
\#\# 1 & PIMO & 8.1900 & 70.9150 & 5.373000 & 44.675 & 7.540916 \\
\#\# 2 & PIPO & 11.4555 & 69.1300 & 5.903499 & 39.192 & 10.040843 \\
\#\# 3 & PSME & 6.1635 & 56.5385 & 5.276000 & 32.602 & 4.988747 \\
\#\# & leafarea. \(95 \%\) & branchmass.5\% & branchmass.95\% & & \\
\#\# 1 & 380.3984 & 4.283342 & 333.6408 & & \\
\#\# 2 & 250.1295 & 7.591966 & 655.1097 & & \\
\#\# 3 & 337.5367 & 3.515638 & 403.7902 & &
\end{tabular}

\section*{Working example : Calculate daily means and totals}

Let's look at a more advanced example using weather data collected at the Hawkesbury Forest Experiment in 2008 (see Section A.10). The data given are in half-hourly time steps. It is a reasonable request to provide data as daily averages (for temperature) and daily sums (for precipitation).
The following code produces a daily weather dataset, and Fig. 6.2.
```


# Read data

hfemet <- read.csv("HFEmet2008.csv")

# This is a fairly large dataset:

nrow(hfemet)

## [1] 17568

# So let's only look at the first few rows:

head(hfemet)

\#\#		DateTime	Tair	AirPress	RH	VPD	PAR	Rain	wind winddirection	
\#\#	$1 / 1 / 2008$	$0: 00$	16.54	101.7967	93.3	0.12656434	0	0	0	152.6
\#\# 2	$1 / 1 / 2008$	$0: 30$	16.45	101.7700	93.9	0.11457229	0	0	0	166.7
\#\# 3	$1 / 1 / 2008$	$1: 00$	16.44	101.7300	94.2	0.10886828	0	0	0	180.2
\#\# 4	$1 / 1 / 2008$	$1: 30$	16.41	101.7000	94.5	0.10304019	0	0	0	180.2
\#\# 5	$1 / 1 / 2008$	$2: 00$	16.38	101.7000	94.7	0.09910379	0	0	0	180.2
\#\# 6	$1 / 1 / 2008$	$2: 30$	16.23	101.7000	94.7	0.09816111	0	0	0	180.2

# Read the date-time

library(lubridate)
hfemet$DateTime <- mdy_hm(hfemet$DateTime)

# Add a new variable 'Date', a daily date variable

hfemet$Date <- as.Date(hfemet$DateTime)

# First aggregate some of the variables into daily means:

library(doBy)
hfemetAgg <- summaryBy(PAR + VPD + Tair ~ Date, data=hfemet, FUN=mean)

# (look at head(hfemetAgg) to check this went OK!)

\#--- Now get daily total Rainfall:
hfemetSums <- summaryBy(Rain ~ Date, data=hfemet, FUN=sum)

# To finish things off, let's make a plot of daily total rainfall:

# (type='h' makes a sort of narrow bar plot)

plot(Rain.sum ~ Date, data=hfemetSums, type='h', ylab=expression(Rain~(mm~day^-1)))

```

\subsection*{6.2.3 Tables of counts}

It is often useful to count the number of observations by one or more multiple factors. One option is to use tapply or summaryBy in combination with the length function. A much better alternative is to use the xtabs and ftable functions, in addition to the simple use of table.

Consider these examples using the Titanic data (see Section A.12).
```


# Read titanic data

titanic <- read.table("titanic.txt", header=TRUE)

```


Figure 6.2: Daily rainfall at the HFE in 2008
```


# Count observations by passenger class

table(titanic\$PClass)

## 

## 1st 2nd 3rd

## 322 280 711

# With more grouping variables, it is more convenient to use xtabs.

# Count observations by combinations of passenger class, sex, and whether they survived:

xtabs( ~ PClass + Sex + Survived, data=titanic)

## , , Survived = 0

## 

## Sex

## PClass female male

\#\# 1st 9120
\#\# 2nd 13148
\#\# 3rd 132441

## 

## , ,Survived = 1

## 

## Sex

## PClass female male

## 1st 134 59

## 2nd 94 25

## 3rd 80 58

# The previous output is hard to read, consider using ftable on the result:

```
```

ftable(xtabs( ~ PClass + Sex + Survived, data=titanic))

```
\begin{tabular}{llrr}
\#\# & & Survived & 0 \\
\#\# PClass & Sex & \\
\#\# 1st & female & & \\
\#\# & male & 134 \\
\#\# 2nd & female & 120 & 59 \\
\#\# & male & 13 & 94 \\
\#\# 3rd & female & 148 & 25 \\
\#\# & male & 132 & 80 \\
& & 441 & 58
\end{tabular}

\subsection*{6.2.4 Adding simple summary variables to dataframes}

We saw how tapply can make simple tables of averages (or totals, or other functions) of some variable by the levels of one or more factor variables. The result of tapply is typically a vector with a length equal to the number of levels of the factor you summarized by (see examples in Section 6.2.1).
What if you want the result of a summary that is the length of the original vector? One option is to aggregate the dataframe with summaryBy, and merge it back to the original dataframe (see Section 6.3.1). But we can use a shortcut.

Consider the allometry dataset, which includes tree height for three species. Suppose you want to add a new variable 'MaxHeight', that is the maximum tree height observed per species. We can use ave to achieve this:
```


# Read data

allom <- read.csv("Allometry.csv")

# Maximum tree height by species:

allom$MaxHeight <- ave(allom$height, allom\$species, FUN=max)

# Look at first few rows (or just type allom to see whole dataset)

head(allom)

## species diameter height leafarea branchmass MaxHeight

\#\# 1 PSME $54.61 \quad 27.04338 .485622 \quad 410.24638 \quad 33.3$

## 2 PSME 34.80 27.42 122.157864 83.65030 33.3

## 3 PSME 24.89 21.23 3.958274 3.51270 33.3

## 4 PSME

## 5 PSME

$\# \#$	6	PSME	37.85	28.07	61.372765	53.86594

```

Note that you can use any function in place of max, as long as that function can take a vector as an argument, and returns a single number.

Try this yourself If you want results similar to ave, you can use summaryBy with the argument full. dimension=TRUE. Try summaryBy on the pupae dataset with that argument set, and compare the result to full. dimension=FALSE, which is the default.

\subsection*{6.2.5 Reordering factor levels based on a summary variable}

It is often useful to tabulate your data in a meaningful order. We saw that, when using summaryBy, tapply or similar functions, that the results are always in the order of your factor levels. Recall that the
default order is alphabetical. This is rarely what you want.
You can reorder the factor levels by some summary variable. For example,
```


# Reorder factor levels for 'Manufacturer' in the cereal data

# by the mean amount of sodium.

# Read data, show default (alphabetical) levels:

cereal <- read.csv("cereals.csv")
levels(cereal\$Manufacturer)

## [1] "A" "G" "K" "N" "P" "Q" "R"

# Now reorder:

cereal$Manufacturer <- with(cereal, reorder(Manufacturer, sodium, median, na.rm=TRUE))
levels(cereal$Manufacturer)

## [1] "A" "N" "Q" "P" "K" "G" "R"

# And tables are now printed in order:

with(cereal, tapply(sodium, Manufacturer, median))

\#\#	A	N	Q	P	K	G	R


| $\# \#$ | 0.0 | 7.5 | 75.0 | 160.0 | 170.0 | 200.0 | 200.0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

```

This trick comes in handy when making barplots; it is customary to plot them in ascending order if there is no specific order to the factor levels, as in this example.

The following code produces Fig. 6.3.
```

coweeta <- read.csv("coweeta.csv")
coweeta\$species <- with(coweeta, reorder(species, height, mean, na.rm=TRUE))
library(doBy)
coweeta_agg <- summaryBy(height ~ species, data=coweeta, FUN=c(mean,sd))
library(gplots)

# This par setting makes the x-axis labels vertical, so they don't overlap.

par(las=2)
with(coweeta_agg, barplot2(height.mean, names.arg=species,
space=0.3, col="red",plot.grid=TRUE,
ylab="Height (m)",
plot.ci=TRUE,
ci.l=height.mean - height.sd,
ci.u=height.mean + height.sd))

```

Try this yourself The above example orders the factor levels by increasing median sodium levels. Try reversing the factor levels, using the following code after reorder. coweeta\$species <- factor(coweeta\$species, levels=rev(levels(coweeta\$species))) Here we used rev to reverse the levels.

Figure 6.3: An ordered barplot for the coweeta tree data (error bars are 1 SD).

\subsection*{6.3 Combining dataframes}

\subsection*{6.3.1 Merging dataframes}
If we have the following dataset called plantdat,
\begin{tabular}{|l|l|l|}
\hline PlantID & Treatment & Plantbiomass \\
\hline 1 & Control & 2.0 \\
\hline 2 & Control & 2.2 \\
\hline 3 & Fertilized & 3.2 \\
\hline 4 & Fertilized & 3.6 \\
\hline 5 & Irrigated & 2.8 \\
\hline 6 & Irrigated & 3.0 \\
\hline
\end{tabular}
and we have another dataset, that includes the same PlantID variable (but is not necessarily ordered, nor does it have to include values for every plant):
\begin{tabular}{|l|l|}
\hline PlantID & Leafnitrogen \\
\hline 1 & 1.6 \\
\hline 5 & 1.8 \\
\hline 4 & 2.4 \\
\hline 3 & 2.8 \\
\hline 2 & 1.8 \\
\hline
\end{tabular}
and execute the command
```

merge(plantdat, leafnitrogendata, by="PlantID")

```
we get the result
\begin{tabular}{|l|l|l|l|}
\hline PlantID & Treatment & Plantbiomass & Leafnitrogen \\
\hline 1 & Control & 2.0 & 1.6 \\
\hline 2 & Control & 2.2 & 1.9 \\
\hline 3 & Fertilized & 3.2 & 2.8 \\
\hline 4 & Fertilized & 3.6 & 2.4 \\
\hline 5 & Irrigated & 2.8 & 1.8 \\
\hline 6 & Irrigated & 3.0 & NA \\
\hline
\end{tabular}

Note the missing value (NA) for the plant for which no leaf nitrogen data was available.
In many problems, you do not have a single dataset that contains all the measurements you are interested in - unlike most of the example datasets in this tutorial. Suppose you have two datasets that you would like to combine, or merge. This is straightforward in \(\mathbf{R}\), but there are some pitfalls.
Let's start with a common situation when you need to combine two datasets that have a different number of rows.
```


# Two dataframes

data1 <- data.frame(unit=c("x","x","x","y","z","z"),Time=c(1,2,3,1,1,2))
data2 <- data.frame(unit=c("y","z","x"), height=c(3.4,5.6,1.2))

# Look at the dataframes

data1

```

```


## 5 z 1

## 6 z 2

data2

\#\#	unit	height
\#\#	1	y
\#\#	2	3.4
\#\#	z	5.6
	x	1.2

# Merge dataframes:

combdata <- merge(data1, data2, by="unit")

# Combined data

combdata

\#\#	unit	Time	height
\#\# 1	x	1	1.2
\#\# 2	x	2	1.2
\#\# 3	x	3	1.2
\#\# 4	y	1	3.4
\#\# 5	z	1	5.6
\#\# 6	z	2	5.6

```

Sometimes, the variable you are merging with has a different name in either dataframe. In that case, you can either rename the variable before merging, or use the following option:
merge(data1, data2, by.x="unit", by.y="item")
Where data1 has a variable called 'unit', and data2 has a variable called 'item'.
Other times you need to merge two dataframes with multiple key variables. Consider this example, where two dataframes have measurements on the same units at some of the the same times, but on different variables:
```


# Two dataframes

data1 <- data.frame(unit=c("x","x","x","y","y","y","z","z","z"),
Time=c(1,2,3,1,2,3,1,2,3),
Weight=c(3.1,5.2,6.9,2.2,5.1,7.5,3.5,6.1,8.0))
data2 <- data.frame(unit=c("x","x","y","y","z","z"),
Time=c(1,2,2,3,1,3),
Height=c(12.1,24.4,18.0,30.8,10.4,32.9))

# Look at the dataframes

data1

\#\#	unit	Time	Weight
\#\# 1	x	1	3.1
\#\# 2	x	2	5.2
\#\# 3	x	3	6.9
\#\# 4	y	1	2.2
\#\# 5	y	2	5.1
\#\# 6	y	3	7.5
\#\# 7	z	1	3.5
\#\# 8	z	2	6.1
\#\# 9	z	3	8.0

data2

## unit Time Height

```
```


## 1 x x 1 12.1

## 2 x 2 24.4

## 3 y 2 18.0

## 4 y 3 30.8

## 5 z l 1 10.4

## 6 z 3 3 32.9

# Merge dataframes:

combdata <- merge(data1, data2, by=c("unit","Time"))

# By default, only those times appear in the dataset that have measurements

# for both Weight (data1) and Height (data2)

combdata

## unit Time Weight Height

## 1 x x 1 3.1 12.1

## 2 x 2 5.2 24.4

## 3 y

## 4 y

## 5 llllll

## 6 z z 3 8.0

# To include all data, use this command. This produces missing values for some times:

merge(data1, data2, by=c("unit","Time"), all=TRUE)

```

```


# Compare this result with 'combdata' above!

```

\section*{Merging multiple datasets}

Consider the cereal dataset (Section A.7), which gives measurements of all sorts of contents of cereals. Suppose the measurements for 'protein', 'vitamins' and 'sugars' were all produced by different labs, and each lab sends you a separate dataset. To make things worse, some measurements for sugars and vitamins are missing, because samples were lost in those labs.
How to put things together?
```


# Read the three datasets given to you from the three different labs:

cereal1 <- read.csv("cereal1.csv")
cereal2 <- read.csv("cereal2.csv")
cereal3 <- read.csv("cereal3.csv")

# Look at the datasets:

cereal1

## 

    Cereal.name protein
    ```
```


## 1 Frosted_Flakes 1

## 2 Product_19 3

## 3 Count_Chocula 1

## 4 Wheat_Chex 3

## 5 Honey-comb 1

## 6 Shredded_Wheat_spoon_size 3

## 7 Mueslix_Crispy_Blend 3

## 8 Grape_Nuts_Flakes 3

## 9 Strawberry_Fruit_Wheats 2

## 10 Cheerios 6

cereal2

## cerealbrand vitamins

## 1 Product_19 100

## 2 Count_Chocula 25

## 3 Wheat_Chex 25

## 4 Honey-comb 25

## 5 Shredded_Wheat_spoon_size 0

## 6 Mueslix_Crispy_Blend 25

## 7 Grape_Nuts_Flakes 25

## 8 Cheerios 25

cereal3

## cerealname sugars

## 1 Frosted_Flakes 11

## 2 Product_19 3

## 3 Mueslix_Crispy_Blend 13

## 4 Grape_Nuts_Flakes 5

## 5 Strawberry_Fruit_Wheats 5

## 6 Cheerios 1

# Note that the number of rows is different between the datasets,

# and even the index name ('Cereal.name') differs between the datasets.

# To merge them all together, use merge() twice, like this.

cerealdata <- merge(cereal1, cereal2,
by.x="Cereal.name",
by.y="cerealbrand", all.x=TRUE)

# NOTE: all.x=TRUE specifies to keep all rows in cereal1 that do not exist in cereal2.

# Then merge again:

cerealdata <- merge(cerealdata, cereal3,
by.x="Cereal.name",
by.y="cerealname", all.x=TRUE)

# And double check the final result

cerealdata

## Cereal.name protein vitamins sugars

## 1

## 2

## 3 Frosted_Flakes 1 NA 11

            Count_Chocula 1 NA
    
## 4 Grape_Nuts_Flakes

## 5 Honey-comb 1 NA

## 6 Mueslix_Crispy_Blend

```
\begin{tabular}{lrrrr}
\#\# 7 & Product_19 & 3 & 100 & 3 \\
\#\# 8 & Shredded_Wheat_spoon_size & 3 & 0 & NA \\
\#\# 9 & Strawberry_Fruit_Wheats & 2 & NA & 5 \\
\#\# 10 & Wheat_Chex & 3 & 25 & NA \\
\# Note that missing values (NA) have been inserted where some data was not available.
\end{tabular}

\subsection*{6.3.2 Row-binding dataframes}

If we have the following dataset called plantdat,
\begin{tabular}{|l|l|l|l|}
\hline PlantID & Treatment & Plantbiomass & Leafnitrogen \\
\hline 1 & Control & 2.0 & 1.6 \\
\hline 2 & Control & 2.2 & 1.8 \\
\hline 3 & Fertilized & 3.2 & 2.4 \\
\hline 4 & Fertilized & 3.6 & 2.8 \\
\hline 5 & Irrigated & 2.8 & 1.8 \\
\hline 6 & Irrigated & 3.0 & NA \\
\hline
\end{tabular}
and we have another dataset (plantdatmore), with exactly the same columns (including the names and order of the columns),
\begin{tabular}{|l|l|l|l|}
\hline PlantID & Treatment & Plantbiomass & Leafnitrogen \\
\hline 7 & Coppiced & 0.6 & 1.1 \\
\hline 8 & Coppiced & 0.9 & 0.9 \\
\hline
\end{tabular}
and execute the command
rbind(plantdat, plantdatmore)
we get the result
\begin{tabular}{|l|l|l|l|}
\hline PlantID & Treatment & Plantbiomass & Leafnitrogen \\
\hline 1 & Control & 2.0 & 1.6 \\
\hline 2 & Control & 2.2 & 1.8 \\
\hline 3 & Fertilized & 3.2 & 2.4 \\
\hline 4 & Fertilized & 3.6 & 2.8 \\
\hline 5 & Irrigated & 2.8 & 1.8 \\
\hline 6 & Irrigated & 3.0 & NA \\
\hline 7 & Coppiced & 0.6 & 1.1 \\
\hline 8 & Coppiced & 0.9 & 0.9 \\
\hline
\end{tabular}

Using merge, we are able to glue dataframes together side-by-side based on one or more 'index' variables. Sometimes you have multiple datasets that can be glued together top-to-bottom, for example when you have multiple very similar dataframes. We can use the rbind function, like so:
```


# Some fake data

mydata1 <- data.frame(var1=1:3, var2=5:7)
mydata2 <- data.frame(var1=4:6, var2=8:10)

# The dataframes have the same column names, in the same order:

mydata1

## var1 var2

## 1 1 5

## 2 2 6

## 3 3 7

mydata2

| \#\# | var1 | var2 |
| :--- | ---: | ---: |
| \#\# | 1 | 4 |
| \#\# | 2 | 5 |

```
```


## 3 6 10

# So we can use rbind to row-bind them together:

rbind(mydata1, mydata2)

```
\begin{tabular}{|c|c|c|c|}
\hline \#\# & \multicolumn{3}{|r|}{var1 var2} \\
\hline \#\# & 1 & 1 & 5 \\
\hline \#\# & 2 & 2 & 6 \\
\hline \#\# & 3 & 3 & 7 \\
\hline \#\# & 4 & 4 & 8 \\
\hline \#\# & 5 & 5 & 9 \\
\hline \#\# & 6 & 6 & 10 \\
\hline
\end{tabular}

Let's look at the above rbind example again but with a modification where some observations are duplicated between dataframes. This might happen, for example, when working with files containing time-series data and where there is some overlap between the two datasets. The union function from the dplyr package only returns unique observations:
```


# Some fake data

mydata1 <- data.frame(var1=1:3, var2=5:7)
mydata2 <- data.frame(var1=2:4, var2=6:8)

# The dataframes have the same column names, in the same order:

mydata1

## var1 var2

## 1 1 5

## 2 2 6

## 3 3 7

mydata2

## var1 var2

## 1 2 6

## 2 3 7

## 3 4 8

# 'rbind' leads to duplicate observations, 'union' removes these:

library(dplyr)
union(mydata1, mydata2)

## var1 var2

## 1 1 5

## 2 2 6

## 3 3 7

## 4 4 8

rbind(mydata1, mydata2)

## var1 var2

## 1 1 5

## 2 2 6

## 3 3 7

## 4 2 6

## 5 3 7

## 6 4 8

```

Sometimes, you want to rbind dataframes together but the column names do not exactly match. One option is to first process the dataframes so that they do match (using subscripting). Or, just use the bind_rows function from the dplyr package. Look at this example where we have two dataframes
that have only one column in common, but we want to keep all the columns (and fill with NA where necessary),
```


# Some fake data

mydata1 <- data.frame(index=c("A","B","C"), var1=5:7)
mydata2 <- data.frame(var1=8:10, species=c("one","two","three"))

# smartbind the dataframes together

bind_rows(mydata1, mydata2)

## index var1 species

## 1 A 5 <NA>

## 2 B 6 <NA>

## 3 C 7 <NA>

## 4 <NA> 8 one

## 5 <NA> 9 two

## 6 <NA> 10 three

```

Note: an equivalent function to bind dataframes side-by-side is cbind, which can be used instead of merge when no index variables are present. However, in this book, the use of cbind is discouraged for dataframes (and we don't discuss matrices), as it can lead to problems that are difficult to fix.

Try this yourself The dplyr package contains a number of functions for merging dataframes that may be more intuitive to you than merge. For example, left_join(mydata1, mydata2) keeps all rows from mydata1 after merging the two dataframes, while right_join(mydata1, mydata2) keeps all rows from mydata2. Read more about the dplyr functions for joining tables at ?dplyr: : join, and try to recreate the examples above using these functions instead of merge.

\subsection*{6.4 Exporting summary tables}

To export summary tables generated with aggregate, tapply or table to text files, you can use write. csv or write.table just like you do for exporting dataframes (see Section 2.4).

For example,
```

cereals <- read.csv("cereals.csv")

# Save a table as an object

mytable <- with(cereals, table(Manufacturer, Cold.or.Hot))

# Write to file

write.csv(mytable, "cerealtable.csv")

```

\subsection*{6.4.1 Inserting tables into documents using R markdown}

How do we insert tables from \(\mathbf{R}\) into Microsoft Word (for example, results from tapply or aggregate)? The best way is, of course, to use R markdown. There are now several packages that make it easy to produce tables in markdown, and from there, markdown easily converts them into Word. First, we'll need some suitable data. We'll start by making a summary table of the pupae dataset we loaded earlier in the chapter.
```


# Load the doBy package

library(doBy)

# read pupae data if you have not already

pupae <- read.csv("pupae.csv")

# Make a table of means and SD of the pupae data

puptab <- summaryBy(Frass + PupalWeight ~ CO2_treatment + T_treatment,
FUN=c(mean,sd), data=pupae, na.rm=TRUE)

# It is more convenient to reorder the dataframe to have sd and mean

# together.

puptab <- puptab[,c("CO2_treatment","T_treatment",
"Frass.mean", "Frass.sd",
"PupalWeight.mean", "PupalWeight.sd")]

# Give the columns short, easy to type names

names(puptab) <- c("CO2","T","Frass", "SD.1", "PupalWeight", "SD.2")

# Convert temperature, which is a factor, to a character variable

# (Factors don't work well with the data-reshaping that takes place in pixiedust)

puptab$T <- as.character(puptab$T)

```

To insert any of the following code into a markdown document, use the following around each code chunk:
```

.`.{r echo=TRUE, results="asis"}

```

\section*{Tables with kable}

We'll start with the kable function from the knitr package. The knitr package provides the functionality behind RStudio's markdown interface, so, if you have been using markdown, you don't need to install anything extra to use kable. This function is simple, robust and offers the ability to easily add captions in Word.
```

library(knitr)
kable(puptab, caption="Table 1. Summary stats for the pupae data.")

```

If you run this in the console, you'll see a markdown table. Knitting your markdown document as "Word" will result in a Word document with a table and a nice caption. You can rename the table columns using the col. names argument (just be sure to get them in the same order!)
As you'll see in the next example, you can also use markdown formatting within the table - note the addition of a subscript to \(\mathrm{CO}_{2}\).
```

kable(puptab, caption="Table 1. Summary stats for the pupae data.",
col.names=c("CO~ 2~ Treatment","Temperature","Frass","SD","Pupal Weight", "SD"))

```

Other things that are easily controlled using kable are the number of digits shown in numeric columns (digits), row names (row.names), and the alignment of each column (align).
```

kable(puptab, caption="Table 1. Summary stats for the pupae data.",
col.names=c("C0~ 2~ Treatment","Temperature","Frass","SD","Pupal Weight", "SD"),
digits=1,
align=c('l','c','r')) \# Values will be recycled to match number of columns

```

\section*{Tables with pander}

Other options for creating tables in markdown include the function pander from the pander package. This function is designed to translate a wide range of input into markdown format. When you give it input it can recognize as a table, it will output a markdown table. Like kable, it can take a caption argument.
```

library(pander)
pander(puptab, caption = "Table 1. Summary stats for the pupae data")

```

One of the advantages of pander is that it can accept a broader range of input than kable. For instance, it can make tables out of the results produced by linear models (something we'll discuss in Chapter 7.) Formatting options available in pander include options for rounding, cell alignment (including dynamic alignments based on cell values), and adding emphasis, such as italic or bold formatting (which can also be set dynamically).
```

library(pander)

# Cell and row emphasis are set before calling pander,

# using functions that start with 'emphasize.':

# emphasize.strong.rows, emphasize.strong.cols, emphasize.strong.cells,

# emphasize.italics.rows, emphasize.italics.cols, emphasize.italics.cells

emphasize.strong.cols(1)
emphasize.italics.cells(which(puptab == "elevated", arr.ind = TRUE))
pander(puptab,
caption = "Table 1. Summary stats for the pupae data, with cell formatting",
\# for <justify>, length must match number of columns
justify = c('left', 'center', 'right','right','right','right'),
round=3)

```

There are also options to set what type of table you would like (e.g., grid, simple, or multiline), cell width, line breaking within cells, hyphenation, what kind of decimal markers to use, and how replace missing values. For more details on these, see the pander vignettes, or ?pandoc.table.return.

\section*{Tables with pixiedust}

A third option for formatting tables is the imaginatively-named pixiedust package. The syntax used by pixiedust is a bit different the other packages we've discussed so far. It starts with the function dust, then sends the results of addition options (called 'sprinkles') to dust using the symbols \(\% \% \%\), which are known as the pipe operator. To make a markdown table, use the 'markdown' sprinkle:
```


# pixiedust requires broom for table formatting

library(broom)
library(pixiedust)
dust(puptab) %>%
sprinkle_print_method("markdown")

```

There are a range of formatting options similar to those available in pander, including bold, italic, a missing data string, and rounding. Each of these is added as a new sprinkle. Cells are specified by row and column:
```

dust(puptab) %>%
sprinkle_print_method("markdown") %>%
sprinkle(rows = c(2, 4), bold = TRUE) %>%
sprinkle(rows = c(3,4), cols=c(1, 1), italic = TRUE) %>%

```
```

sprinkle(round = 1)

```

It is also possible to add captions, change column names, and replace the contents of a given cell during formatting.
```


# Captions are added to the dust() function

dust(puptab, caption="Table 1. Summary stats for the pupae data,
formatted with pixiedust") %>%

# Note that identical column names are not allowed

sprinkle_colnames("C02 Treatment","Temperature","Frass","Frass SD",
"Pupal Weight", "Weight SD") %>%

# Replacement must have the same length as what it replaces

sprinkle(cols = 1, replace =
c("ambient", "ambient", "elevated", "elevated")) %>%
sprinkle_print_method("markdown")

```

If you use latex or html, you will want to look into this package further, as it has a number of special 'sprinkles' for these formats.

Further reading If you want to know more about kable, the help page has a thorough explanation. Type ?kable at the command line. There is a good introduction to pander called "Rendering tables with pandoc.table" at https://cran.r-project.org/web/packages/pander/vignettes/ pandoc_table.html. (Don't be confused by the name; pandoc.table is the table function hidden under the hood of pander.) Likewise, pixiedust has a good introductory vignette called "Creating magic with pixiedust" at https://cran.r-project.org/web/packages/pixiedust/vignettes/ pixiedust.html. For a list of all of the pixiedust'sprinkles' available, see https://cran.r-project. org/web/packages/pixiedust/vignettes/sprinkles.html.

\subsection*{6.5 Exercises}

In these exercises, we use the following colour codes:
- Easy: make sure you complete some of these before moving on. These exercises will follow examples in the text very closely.
- Intermediate: a bit harder. You will often have to combine functions to solve the exercise in two steps.
- Hard: difficult exercises! These exercises will require multiple steps, and significant departure from examples in the text.

We suggest you complete these exercises in an \(\mathbf{R}\) markdown file. This will allow you to combine code chunks, graphical output, and written answers in a single, easy-to-read file.

\subsection*{6.5.1 Summarizing the cereal data}
1. Read the cereal data, and produce quick summaries using str, summary, contents and describe (recall that the last two are in the Hmisc package). Interpret the results.
2. \(\square\) Find the average sodium, fiber and carbohydrate contents by Manufacturer.
3. ■ Add a new variable 'SodiumClass', which is 'high' when sodium >150 and 'low' otherwise. Make sure the new variable is a factor. Look at the examples in Section 3.2 to recall how to do this. Now, find the average, minimum and maximum sugar content for 'low' and 'high' sodium. Hint: make sure to use na.rm=TRUE, because the dataset contains missing values.
4. Find the maximum sugar content by Manufacturer and sodiumClass, using tapply. Inspect the result and notice there are missing values. Try to use na.rm=TRUE as an additional argument to tapply, only to find out that the values are still missing. Finally, use xtabs (see Section 6.2.3, p. 155) to count the number of observations by the two factors to find out we have missing values in the tapply result.
5. \(\quad\) Repeat the previous question with summaryBy. Compare the results.
6. Count the number of observations by Manufacturer and whether the cereal is 'hot' or 'cold', using xtabs (see Section 6.2.3, p. 155).

\subsection*{6.5.2 Words and the weather}
1. Using the 'Age and memory' dataset (first read Section A. 11 on p. 247 how to read this dataset), find the mean and maximum number of words recalled by 'Older' and 'Younger' age classes.
2. Using the HFE weather dataset (see Section A.10, p. 247), find the mean air temperature by month. To do this, first add the month variable as shown in Section 3.6.2 (p. 69).

\subsection*{6.5.3 Merge new data onto the pupae data}
1. - First read the pupae data (see Section A.6, p. 244). Also read this short dataset, which gives a label 'roomnumber' for each \(\mathrm{CO}_{2}\) treatment.
```

| CO2_treatment | Roomnumber |
| --: | :-- |

```
\begin{tabular}{lll}
\(\mid 280\) & \(\mid 1\) & \(\mid\) \\
1400 & \(\mid 2\) & |
\end{tabular}

To read this dataset, consider the data.frame function described in Section 2.1.2 (p. 36).
2. Merge the short dataset onto the pupae data. Check the result.

\subsection*{6.5.4 Merging multiple datasets}

Read Section 6.3.1 (p. 162) before trying this exercise.
First, run the following code to construct three dataframes that we will attempt to merge together.
```

dataset1 <- data.frame(unit=letters[1:9], treatment=rep(LETTERS[1:3],each=3),
Damage=runif (9,50,100))
unitweight <- data.frame(unit=letters[c(1,2,4,6,8,9)], Weight = rnorm(6,100,0.3))
treatlocation <- data.frame(treatment=LETTERS[1:3], Glasshouse=c("G1","G2","G3"))

```
1. Merge the three datasets together, to end up with one dataframe that has the columns 'unit', 'treatment', 'Glasshouse', 'Damage' and 'Weight'. Some units do not have measurements of Weight. Merge the datasets in two ways to either include or exclude the units without Weight measurements.

\subsection*{6.5.5 Ordered boxplot}
1. First recall Section 4.3 .5 (p. 91), and produce Fig. 4.8 (p. 92).
2. Now, redraw the plot with Manufacturer in order of increasing mean sodium content (use reorder, see Section 6.2.5 on p. 157).
3. Inspect the help page ?boxplot, and change the boxplots so that the width varies with the number of observations per manufacturer (Hint: find the varwidth argument).

\subsection*{6.5.6 Variances in the I x F}

Here, we use the tree inventory data from the irrigation by fertilization (I \(\times\) F) experiment in the Hawkesbury Forest Experiment (HFE) (see Section A.15, p. 248).
1. Use only data from 2012 for this exercise. You can use the file 'HFEIFplotmeans2012.csv' if you want to skip this step.
2. There are four treatments in the dataframe. Calculate the variance of diameter for each of the treatments (this should give four values). These are the within-treatment variances. Also calculate the variance of tree diameter across all plots (this is one number). This is the plot-to-plot variance.
3. In 2, also calculate the mean within-treatment variance. Compare the value to the plot-to-plot variance. What can you tentatively conclude about the treatment effect?

\subsection*{6.5.7 Weight loss}

This exercise brings together many of the skills from the previous chapters.
Consider a dataset of sequential measurements of a person's weight while on a diet (the 'weightloss' dataset, see Section A. 5 on p. 244).
1. \(\square\) Read the dataset ('weightloss.csv'), and convert the 'Date' variable to the Date class. See Section 3.6.1 for converting the date, and note the example in Section 3.6.2.1 (p. 71).
2. Add a new variable to the dataset, with the subjects's weight in kilograms (kg) (1 kg = 2.204 pounds).
3. \(\quad\) Produce a line plot that shows weight (in kg) versus time.
4. \(\Delta\) The problem with the plot you just produced is that all measurements are connected by a line, although we would like to have line breaks for the days where the weight was not measured. To do this, construct a dataframe based on the weightloss dataset that has daily values. Hints:
- Make an entirely new dataframe, with a Date variable, ranging from the first to last days in the weightloss dataset, with a step of one day (see Section 3.6.2.1, p. 71).
- Using merge, paste the Weight data onto this new dataframe. Check for missing values. Use the new dataframe to make the plot.
5. - Based on the new dataframe you just produced, graph the daily change in weight versus time. Also add a dashed horizontal line at \(y=0\).

\section*{Chapter 7}

\section*{Linear modelling}

\subsection*{7.1 One-way ANOVA}

Remember that in Chapter 5 we learned how to compare two means using a two sample \(t\)-test. In the simplest case, we assumed that the samples came from populations with the same variance. One-way ANOVA (ANalysis Of VAriance) can be used to compare means across more than two populations. We will not go into the theory here, but the foundation of ANOVA is comparing the variation between the group means to the variation within the groups (using an \(F\)-statistic).

We can use either the aov function or 1 lm to perform ANOVAs. We will focus exclusively on the latter as it can be generalized more easily to other models. The use of aov is only appropriate when you have a balanced design (i.e., the same sample sizes in each of your groups).
To use lm for an ANOVA, we need a dataframe containing a (continuous) response variable and a factor variable that defines the groups. For example, in the Coweeta dataset, the species variable is a factor that defines groups by species. We can compute (for example) the mean height by species. Let's look at an example using the Coweeta data, but with only four species to simplify the output.
```

coweeta <- read.csv("coweeta.csv")

# Take a subset and drop empty levels with droplevels.

cowsub <- droplevels(subset(coweeta, species %in% c("cofl","bele","oxar","quru")))

# Quick summary table

with(cowsub, tapply(height, species, mean))

| \#\# | bele | cofl | oxar | quru |
| :--- | ---: | ---: | ---: | ---: |
| \#\# | 21.86700 | 6.79750 | 16.50500 | 21.10556 |

```

We might want to ask, does the mean height vary by species? Before you do any test for significance, a graphical summary of the data is always useful. For this type of data, box plots are preferred since they visualize not just the means but also the spread of the data (see also Section 4.3.5) (Fig. 7.1).
```

boxplot(height~species, data=cowsub)

```

It seems like some of the species differences are quite large. We can fit a one-way ANOVA with 1m, like so:
fit1 <- lm(height ~ species, data=cowsub)
fit1

Figure 7.1: Simple box plot for the Coweeta data.
```


## 

## Call:

## lm(formula = height ~ species, data = cowsub)

## 

## Coefficients:

## (Intercept) speciescofl speciesoxar speciesquru

| $\# \#$ | 21.8670 | -15.0695 | -5.3620 | -0.7614 |
| :--- | :--- | :--- | :--- | :--- |

```

Notice the four estimated Coefficients, these represent the so-called contrasts. In this case, Intercept represents the mean of the first species, bele. The next three coefficients are the differences between each species and the first (e.g., species cofl has a mean that is \(\mathbf{- 1 5 . 0 7}\) lower than bele).

We can get more details of the fit using summary.
```

summary(fit1)

## 

## Call:

## lm(formula = height ~ species, data = cowsub)

## 

## Residuals:

\#\# Min $\quad$ 1Q Median $\quad$ 3Q $\quad$ Max

## -11.405 -2.062 0.695 3.299 8.194

## 

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 21.8670 1.5645 13.977 7.02e-14 ***

## speciescofl -15.0695 2.9268 -5.149 2.04e-05 ***

```
```


## speciesoxar -5.3620 2.3467 -2.285 0.0304 *

## speciesquru -0.7614 2.2731 -0.335 0.7402

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## 

## Residual standard error: 4.947 on 27 degrees of freedom

## Multiple R-squared: 0.5326,Adjusted R-squared: 0.4807

## F-statistic: 10.26 on 3 and 27 DF, p-value: 0.0001111

```

This gives us a \(t\)-statistic (and p-value) for each coefficient, for a test where the value is compared to zero. Not surprisingly the Intercept (i.e., the mean for the first species) is significantly different from zero (as indicated by the very small p-value). Two of the next three coefficients are also significantly different from zero.

At the end of the summary, the \(F\)-statistic and corresponding \(p\)-value are shown. This p -value tells us whether the whole model is significant. In this case, it is comparing a model with four coefficients (one for each species) to a model that just has the same mean for all groups. In this case, the model is highly significant - i.e. there is evidence of different means for each group. In other words, a model where the mean varies between the four species performs much better than a model with a single grand mean.

\subsection*{7.1.1 Multiple comparisons}

The ANOVA, as used in the previous section, gives us a single p-value for the overall 'species effect'. The summary statement further shows whether individual species are different from the first level in the model, which is not always useful. If we want to know whether the four species were all different from each other, we can use a multiple comparison test.

We will use the emmeans function from the emmeans package (as a side note, base \(\mathbf{R}\) includes the TukeyHSD function, but that does not work with lm, only with aov, and so we do not show you how to use it).
```


# First fit the linear model again (a one-way ANOVA,

# because species is a factor)

lmSpec <- lm(height ~ species, data=cowsub)

# Load package

library(emmeans)

# Estimate marginal means and confidence interval for each

# level of 'species'. These estimates can be seen if you

# view the result, but we won't do this.

tukey_Spec <- emmeans(lmSpec, 'species')

# Print results of contrasts. This shows p-values for the null hypotheses

# that species A is no different from species B, and so on. By default,

# Tukey contrasts are calculated.

pairs(tukey_Spec)

| \#\# contrast | estimate | SE df | t.ratio | p.value |  |  |
| :--- | :--- | ---: | :--- | :--- | :---: | :--- |
| $\# \#$ | bele - cofl | 15.069 | 2.93 | 27 | 5.149 | 0.0001 |
| $\# \#$ | bele - oxar | 5.362 | 2.35 | 27 | 2.285 | 0.1267 |
| $\# \#$ | bele - quru | 0.761 | 2.27 | 27 | 0.335 | 0.9868 |
| $\# \#$ | cofl - oxar | -9.707 | 3.03 | 27 | -3.204 | 0.0171 |
| $\# \#$ | cofl - quru | -14.308 | 2.97 | 27 | -4.813 | 0.0003 |
| $\# \#$ | oxar - quru | -4.601 | 2.40 | 27 | -1.914 | 0.2462 |

```


Figure 7.2: A plot of a pairwise p-values for multiple comparisons.
```


## 

## P value adjustment: tukey method for comparing a family of 4 estimates

# Some of the species are different from each other, but not all.

```

Try this yourself In the above summary of the multiple comparison (summary (tukey_Spec)), the \(p\)-values are adjusted for multiple comparisons with the so-called 'single-step method'. To use a different method for the correction (there are many), try the following example:
pairs(tukey_Spec, adjust="bonferroni")
Also look at the other options in the help page for ?summary.emmGrid, in the 'P-value adjustments' section.

We can also produce a pairwise p-value plot of the multiple comparisons, which shows the level of support for each null hypothesis of a pair having the same mean.
This code produces Fig. 7.2.
```


# A plot of a fitted 'emmeans' object (multiple comparison)

pwpp(tukey_Spec)

```

There are several vignettes for emmeans at https://cran.r-project.org/web/packages/emmeans/, these are very helpful for finding out what is possible with this package.

\subsection*{7.2 Two-way ANOVA}

Sometimes there are two (or more) treatment factors. The 'age and memory' dataset (see Section A.11) includes the number of words remembered from a list for two age groups and five memory techniques.

This dataset is balanced, as shown below. in a table of counts for each of the combinations. First we fit a linear model of the main effects.
```


# Read tab-delimited data

memory <- read.table("eysenck.txt", header=TRUE)

# To make the later results easier to interpret, reorder the Process

# factor by the average number of words remembered.

memory\$Process <- with(memory, reorder(Process, Words, mean))

# Count nr of observations

xtabs( ~ Age + Process, data=memory)

| \#\# | Process |  |  |  |  |  |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: |
| \#\# | Age | Counting | Rhyming | Adjective | Imagery | Intentional |
| \#\# | Older | 10 | 10 | 10 | 10 | 10 |
| \#\# | Younger | 10 | 10 | 10 | 10 | 10 |

# Fit linear model

fit2 <- lm(Words ~ Age + Process, data=memory)
summary(fit2)

## 

## Call:

## lm(formula = Words ~ Age + Process, data = memory)

## 

## Residuals:

\#\# Min 1Q Median 3Q Max

## -9.100 -2.225 -0.250 1.800 9.050

## 

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 5.2000 0.7632 6.813 8.99e-10 ***

## AgeYounger 3.1000 0.6232 4.975 2.94e-06 ***

## ProcessRhyming 0.5000 0.9853 0.507 0.613

## ProcessAdjective 6.1500 0.9853 6.242 1.24e-08 ***

## ProcessImagery 8.7500 0.9853 8.880 4.41e-14 ***

## ProcessIntentional 8.9000 0.9853 9.033 2.10e-14 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## 

## Residual standard error: 3.116 on 94 degrees of freedom

## Multiple R-squared: 0.6579,Adjusted R-squared: 0.6397

## F-statistic: 36.16 on 5 and 94 DF, p-value: < 2.2e-16

```

The summary of the fitted model displays the individual \(t\)-statistics for each estimated coefficient. As with the one-way ANOVA, the significance tests for each coefficient are performed relative to the base level (by default, the first level of the factor). In this case, for the Age factor, the older is the first level, and for the Process factor, Adjective is the first level. Thus all other coefficients are tested relative to the "Older/Adjective" group. The \(F\)-statistic at the end is for the overall model, it tests whether the model is significantly better than a model that includes only a mean count.

If we want to see whether Age and/or Process have an effect, we need \(F\)-statistics for these terms. Throughout this book, to compute p-values for terms in linear models, we use the Anova function from the car package.
```


# Perform an ANOVA on a fitted model, giving F-statistics

library(car)
Anova(fit2)

## Anova Table (Type II tests)

## 

## Response: Words

## Sum Sq Df F value Pr(>F)

## Age 240.25 1 24.746 2.943e-06 ***

## Process 1514.94 4 39.011 < 2.2e-16 ***

## Residuals 912.60 94

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

```

In this form, the F-statistic is formed by comparing models that do not include the term, but include all others. For example, Age is tested by comparing the full model against a model that includes all other terms (in this case, just Process).

\subsection*{7.2.1 Interactions}

An important question when we have more than one factor in an experiment is whether there are any interactions. For example, do Process effects differ for the two Age groups, or are they simply additive? We can add interactions to a model by modifying the formula. An interaction is indicated using a ":". We can also include all main effects and interactions using the * operator.
```


# Two equivalent ways of specifying a linear model that includes all main effects

# and interactions:

fit3 <- lm(Words ~ Age + Process + Age:Process, data=memory)

# Is the same as:

fit3.2 <- lm(Words ~ Age * Process, data=memory)
Anova(fit3.2)

## Anova Table (Type II tests)

## 

## Response: Words

## Sum Sq Df F value Pr(>F)

## Age 240.25 1 29.9356 3.981e-07 ***

## Process 1514.94 4 47.1911 < 2.2e-16 ***

## Age:Process 190.30 4 5.9279 0.0002793 ***

## Residuals 722.30 90

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

```

The Anova table shows that the interaction is significant. When an interaction is significant, this tells you nothing about the direction or magnitude of the interaction term. You can inspect the estimated coefficients in the summary output, but we recommend to first visualize the interaction with simple plots, as the coefficients can be easily misinterpreted. One way to visualize the interaction is to use the interaction. plot function, as in the following example.

This code produces Fig. 7.3. If there were no interaction between the two factor variables, you would expect to see a series of parallel lines (because the effects of Process and Age would simply be additive).

Figure 7.3: An interaction plot for the memory data, indicating a strong interaction (because the lines are not parallel).
```


# Plot the number of words rememberd by Age and Process

# This standard plot can be customized in various ways, see ?interaction.plot

with(memory, interaction.plot(Age, Process, Words))

```

\subsection*{7.2.1.1 More multiple comparisons}

When there is a signficant interaction term, we might want to know under what levels of one factor is the effect of another factor signficant. This can be done easily using functions in the emmeans package.
```


# Load package

library(emmeans)

# Estimate marginal means associated with 'Age' for each level of 'Process'.

# Notice here that we use the formula interface to specify contrasts, whereas

# we specified contrasts using a character string in the one-way ANOVA example.

fit3.emm <- emmeans(fit3, ~ Age | Process)

# Calculate p-values for each pairwise contrast

pairs(fit3.emm)

## Process = Counting:

## contrast estimate SE df t.ratio p.value

## Older - Younger 0.5 1.27 90 0.395 0.6940

## 

## Process = Rhyming:

## contrast estimate SE df t.ratio p.value

## Older - Younger -0.7 1.27 90 -0.553 0.5820

## 

## Process = Adjective:

## contrast estimate SE df t.ratio p.value

```
```


## Older - Younger -3.8 1.27 90 -2.999 0.0035

## 

## Process = Imagery:

## contrast estimate SE df t.ratio p.value

## Older - Younger -4.2 1.27 90 -3.315 0.0013

## 

## Process = Intentional:

## contrast estimate SE df t.ratio p.value

## Older - Younger -7.3 1.27 90 -5.762 <.0001

```

Using the pairs function on an emmGrid object returns effect sizes and significance tests for each pairwise contrast. In this example, we can see that older subjects remember signficantly fewer words than younger ones when using the Adjective, Imagery and Intentional processes but not the Counting or Rhyming processes. Alternatively, we may want to contrast different processes within each level of Age. Here it is helpful to use the cld function from the multcomp package to identify groups of levels that are not significantly different.
```


# Estimate marginal means associated with 'Process' for each level of 'Age'

fit3.emm.2 <- emmeans(fit3, ~ Process | Age)

# Identify groups of processes for which the processes are similar.

# (use multcomp:: to access the function without loading the library)

multcomp::cld(fit3.emm.2)

## Age = Older:

## Process emmean SE df lower.CL upper.CL .group

## Rhyming 6.9 0.896 90 5.12 8.68 1

## Counting 7.0 0.896 90 5.22 8.78 1

## Adjective 11.0 0.896 90 9.22 12.78 2

## Intentional 12.0 0.896 90 10.22 13.78 2

## Imagery 13.4 0.896 90 11.62 15.18 2

## 

## Age = Younger:

## Process emmean SE df lower.CL upper.CL .group

## Counting 6.5 0.896 90 4.72 8.28 1

## Rhyming

## Adjective 14.8 0.896 90 13.02 16.58 2

## Imagery 17.6 0.896 90 15.82 19.38 23

## Intentional 19.3 0.896 90 17.52 21.08 3

## 

## Confidence level used: 0.95

## P value adjustment: tukey method for comparing a family of 5 estimates

## significance level used: alpha = 0.05

```

The resulting groups can then be used, for example, to determine which letter(s) should be placed above each treatment in a barplot.

\subsection*{7.2.2 Comparing models}

In the above example, we fitted two models for the Memory dataset: one without, and one with the interaction between Process and Age. We assessed the significance of the interaction by inspecting the p -value for the Age:Process term in the Anova statement. Another possibility is to perform a likelihood ratio test on two 'nested' models, the model that includes the term, and a model that excludes it. We can perform a likelihood ratio test with the anova function, not to be confused with Anova from the car
```

package!1

# We can perform an anova on two models to compare the fit.

# Note that one model must be a subset of the other model.

# In this case, the second model has the same predictors as the first plus

# the interaction, and the likelihood ratio test thus tests the interaction.

anova(fit2,fit3)

## Analysis of Variance Table

## 

## Model 1: Words ~ Age + Process

## Model 2: Words ~ Age + Process + Age:Process

## Res.Df RSS Df Sum of Sq F Pr(>F)

## 1 94 912.6

## 2 90 722.3 4 190.3 5.9279 0.0002793 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

```

A second common way to compare different models is by the AIC (Akaike's Information Criterion), which is calculated based on the likelihood (a sort of goodness of fit), and penalized for the number of parameters (i.e. number of predictors in the model). The model with the lowest AIC is the preferred model. Calculating the AIC is simple,
```

AIC(fit2, fit3)

## df AIC

## fit2 7 518.9005

## fit3 11 503.5147

```

We once again conclude that the interaction improved the model fit substantially.

\subsection*{7.2.3 Diagnostics}

The standard ANOVA assumes normality of the residuals, and we should always check this assumption with some diagnostic plots (Fig. 7.4). Although \(\mathbf{R}\) has built-in diagnostic plots, we prefer the use of qqPlot and residualPlot, both from the car package.
```

par(mfrow=c(1,2))
library(car)

# Residuals vs. fitted

residualPlot(fit3)

# QQ-plot of the residuals

qqPlot(fit3)

```
\#\# [1] 2686

The QQ-plot shows some slight non-normality in the upper right. The non-normality probably stems from the fact that the Words variable is a 'count' variable. We will return to this in Section 7.5 .

Try this yourself Check whether a log-transformation of Words makes the residuals closer to normally distributed.

\footnotetext{
\({ }^{1}\) You may have seen the use of anova on a single model, which also gives an ANOVA table but is confusing because a sequential (Type-l) test is performed, which we strongly advise against as it is never the most intuitive test of effects.
}

Figure 7.4: Simple diagnostic plots for the Memory ANOVA.

\subsection*{7.3 Multiple linear regression}

In Chapter 5, we introduced simple linear regression. We use this method to study the relationship between two continuous variables: a response ('y variable') and a predictor (or independent variable) ('x variable'). We can use multiple regression to study the relationship between a response and more than one predictor. For example, in the Allometry dataset (see Section A.1), we might expect that leaf area depends on both tree diameter and height. We test this idea in the following example.
The first step should always be to inspect the data visually. In this case, let's make two simple scatter plots (Fig. 7.5).
```


# Read the data, if you haven't already

allom <- read.csv("allometry.csv")

# Two simple scatter plots on a log-log scale

par(mfrow=c (1,2))
plot(leafarea~diameter, data=allom, log="xy")
plot(leafarea~height, data=allom, log="xy")

```

These plots are shown on a log-log scale, and it certainly looks like there is a relationship between leaf area and diameter as well as height. However, since diameter and height are probably correlated we need to take a close look at a linear model to understand what is going on.
We are going to fit a model that looks like, using statistical notation,
\[
\begin{equation*}
y=\alpha+\beta_{1} x_{1}+\beta_{2} x_{2}+\varepsilon \tag{7.1}
\end{equation*}
\]
where \(\alpha\) is the intercept, \(x_{1}\) and \(x_{2}\) are the two predictors (height and diameter), andthe two slopes are \(\beta_{1}\) and \(\beta_{2}\). We are particularly interested in testing for significant effect of both predictors, which is akin to saying that we are testing the values of the two slopes against zero. We will first use the original scale (i.e. not log-transformed) and perform some diagnostic plots (shown in Fig. 7.6).
```


# Fit a multiple regression without interactions, and inspect the summary

fit4 <- lm(leafarea~diameter+height, data=allom)
summary(fit4)

```


Figure 7.5: Leaf area as a function of height and diameter (note the log-log scale).
```


## 

## Call:

## lm(formula = leafarea ~ diameter + height, data = allom)

## 

## Residuals:

| \#\# | Min | 1Q | Median | 3Q | Max |
| :--- | ---: | ---: | ---: | ---: | ---: |
| \#\# | -126.892 | -24.429 | 1.775 | 27.676 | 207.676 |

## 

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -17.8759 17.6390 -1.013 0.31492

## diameter 6.9137 0.7562 9.143 5.68e-13 ***

## height -4.4030 1.2794 -3.441 0.00106 **

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## 

## Residual standard error: 55.43 on 60 degrees of freedom

## Multiple R-squared: 0.743,Adjusted R-squared: 0.7345

## F-statistic: 86.75 on 2 and 60 DF, p-value: < 2.2e-16

# Basic diagnostic plots.

par(mfrow=c(1,2))
residualPlot(fit4)
qqPlot(fit4)

```
\#\# [1] 3847

The summary shows that both coefficients (\(\beta \mathrm{s}\)) are significantly different from zero, and the p -value for diameter is much smaller. However, the diagnostic plots indicate some problems. The scale-location plot shows a somewhat increasing trend - i.e. the variance is not constant, and the QQ-plot shows some departures from normality.
Let's refit the model using log-transformed variables, and check the diagnostic plots (Fig. 7.7).

Figure 7.6: Diagnostic plots for the multiple regression of the Allometry data.
```


# For convenience, add log-transformed variables to the dataframe:

allom$logLA <- log10(allom$leafarea)
allom$logD <- log10(allom$diameter)
allom$logH <- log10(allom$height)

# Refit model, using log-transformed variables.

fit5 <- lm(logLA ~ logD + logH, data=allom)
summary(fit5)

## 

## Call:

## lm(formula = logLA ~ logD + logH, data = allom)

## 

## Residuals:

## Min 1Q Median 3Q Max

## -1.07231 -0.17010 0.01759 0.17347 0.45205

## 

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -0.4133 0.1554 -2.659 0.0100 *

## logD 2.1901 0.3040 7.205 1.12e-09 ***

## logH -0.7343 0.3222 -2.279 0.0262 *

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## 

## Residual standard error: 0.2525 on 60 degrees of freedom

## Multiple R-squared: 0.7905,Adjusted R-squared: 0.7835

## F-statistic: 113.2 on 2 and 60 DF, p-value: < 2.2e-16

# And diagnostic plots.

par(mfrow=c(1,2))
residualPlot(fit5)
qqPlot(fit5)

```


Figure 7.7: Diagnostic plots for the multiple regression of the Allometry data, using log-transformed variables.
\#\# [1] 332
The coefficients (\(\beta \mathrm{s}\)) are still significant (as shown by small p-values) and the diagnostic plots are better, although the QQ-plot is affected by some outliers.

Of course, we are not restricted to just two predictors, and we can include interactions as well. For example,
```


# A multiple regression that includes all main effects as wel as interactions

fit6 <- lm(logLA ~ logD * logH, data=allom)
summary(fit6)

## 

## Call:

## lm(formula = logLA ~ logD * logH, data = allom)

## 

## Residuals:

| \#\# | Min | 1Q | Median | 3Q | Max |
| :--- | ---: | ---: | ---: | ---: | ---: |
| $\# \#$ | -1 | 07242 | -0.17007 | 0.01782 | 0.17350 |
| 0.45190 |  |  |  |  |  |

## 

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -0.41519 0.64371 -0.645 0.52143

## logD 2.19222 0.75013 2.922 0.00492 **

## logH -0.73309 0.51042 -1.436 0.15621

## logD:logH -0.00135 0.44214 -0.003 0.99757

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## 

## Residual standard error: 0.2547 on 59 degrees of freedom

## Multiple R-squared: 0.7905,Adjusted R-squared: 0.7798

## F-statistic: 74.19 on 3 and 59 DF, p-value: < 2.2e-16

```

In this case, the interaction is not significant.

\subsection*{7.4 Linear models with factors and continuous variables}

So far we have looked at ANOVA, including two-way ANOVA, where a response variable is modelled as dependent on two treatments or factors, and regression including multiple linear regression where a response variable is modelled as dependent on two continuous variables. These are just special cases of the linear model, and we can extend these simple models by including a mix of factors and continuous predictors. The situation where we have one continuous variable and one factor variable is also known as ANCOVA (analysis of covariance), but using the lm function we can specify any model with a combination of predictors.
Returning to the allometry data set once more, we might expect that leaf area depends also on species, which is a factor with three levels:
```


# A linear model combining factors and continuous variables

fit7 <- lm(logLA ~ species + logD + logH, data=allom)
summary(fit7)

## 

## Call:

## lm(formula = logLA ~ species + logD + logH, data = allom)

## 

## Residuals:

| \#\# | Min | 1Q | Median | 3Q | Max |
| :--- | ---: | ---: | ---: | ---: | ---: |
| \#\# | -1.10273 | -0.09629 | -0.00009 | 0.13811 | 0.38500 |

## 

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -0.28002 0.14949 -1.873 0.06609 .

## speciesPIPO -0.29221 0.07299 -4.003 0.00018 ***

## speciesPSME -0.09095 0.07254 -1.254 0.21496

## logD 2.44336 0.27986 8.731 3.7e-12 ***

## logH -1.00967 0.29870 -3.380 0.00130 **

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## 

## Residual standard error: 0.2252 on 58 degrees of freedom

## Multiple R-squared: 0.839,Adjusted R-squared: 0.8279

## F-statistic: 75.54 on 4 and 58 DF, p-value: < 2.2e-16

```

The summary of this fit shows that PIPO differs markedly from the base level species, in this case PIMO. However, PSME does not differ from PIMO. The linear effects in log diameter and log height remain significant.

An ANOVA table will tell us whether adding species improves the model overall (as a reminder, you need the car package loaded for this function).
```

Anova(fit7)

## Anova Table (Type II tests)

## 

## Response: logLA

## Sum Sq Df F value Pr(>F)

## species 0.8855 2 8.731 0.0004845 ***

## logD 3.8652 1 76.222 3.701e-12 ***

## logH 0.5794 1 11.426 0.0013009 **

## Residuals 2.9412 58

```
```


## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

```

We see that adding species to the model did improve the model.
Perhaps the slopes on log diameter (and other measures) vary by species. This is an example of an interaction between a factor and a continuous variable. We can fit this as:
```


# A linear model that includes an interaction between a factor and

# a continuous variable

fit8 <- lm(logLA ~ species * logD + species * logH, data=allom)
summary(fit8)

## 

## Call:

## lm(formula = logLA ~ species * logD + species * logH, data = allom)

## 

## Residuals:

## Min 1Q Median 3Q Max

## -1.05543 -0.08806 -0.00750 0.11481 0.34124

## 

## Coefficients:

## Estimate Std. Error t value Pr}(>|t|

## (Intercept) -0.3703 0.2534 -1.461 0.1498

## speciesPIPO -0.4074 0.3483 -1.169 0.2473

## speciesPSME 0.2249 0.3309 0.680

## logD 1.3977 0.4956 2.820 0.0067 **

## logH 0.1610 0.5255 0.306 0.7606

## speciesPIPO:logD 1.5029 0.6499 2.313 0.0246 *

## speciesPSME:logD 1.7231 0.7185 2.398 0.0200 *

## speciesPIPO:logH -1.5238 0.6741 -2.261 0.0278 *

## speciesPSME:logH -2.0890 0.7898 -2.645 0.0107 *

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## 

## Residual standard error: 0.2155 on 54 degrees of freedom

## Multiple R-squared: 0.8626,Adjusted R-squared: 0.8423

## F-statistic: 42.39 on 8 and 54 DF, p-value: < 2.2e-16

```

Note that the species effect is still fitted, because we used the * operator (where species*logD is equivalent to species + logD + species:logD).
From the summary, the logD (log diameter) coefficient appears to be significant. In this example, this coefficient represents the slope for the base species, PIMO. Other terms, including speciesPIPO:1ogD, are also significant. This means that their slopes differ from that of the base species (PIMO).

We can also look at the Anova to decide whether adding these slope terms improved the model.
```

Anova(fit8)

```
```


## Anova Table (Type II tests)

## 

## Response: logLA

## Sum Sq Df F value Pr(>F)

## species 0.8855 2 9.5294 0.0002854 ***

## logD 3.9165 1 84.2945 1.286e-12 ***

## logH 0.6102 1 13.1325 0.0006425 ***

## species:logD 0.3382 2 3.6394 0.0329039 *

```


Figure 7.8: Effects plot of a linear model using the Memory data, including main effects only. Effects of Age (left panel) and Process (right panel) are assumed to be additive.
```


## species:logH 0.3752 2 4.0378 0.0232150 *

## Residuals 2.5089 54

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

```

\subsection*{7.4.1 Predicted effects}

The coefficients in a linear model are usually contrasts (i.e. differences between factor levels), slopes or intercepts. While this is useful for comparisons of treatments, it is often more instructive to visualize the predictions at various combinations of factor levels.

For balanced designs where the model contains all interactions, the predicted means from a linear model will be the same as the group means calculated from the data.

However, if the data is not balanced and/or some of the interactions are left out the group mean and the predicted mean will be different. The package effects contains a very useful function to calculate and visualise these effects.

For example, consider this example using the memory data (Fig. 7.8) with main effects only.
```


# Load the effects package

library(effects)

# Fit linear model, main effects only

fit9 <- lm(Words ~ Age + Process, data=memory)
plot(allEffects(fit9))

```

And compare the output when we add all interactions (Fig. 7.9),
```

fit10 <- lm(Words ~ Age * Process, data=memory)
plot(allEffects(fit10))

```


Figure 7.9: Effects plot a linear model of the Memory data, including main effects and interactions. The effects of Age and Process are not simply additive.

Try this yourself Use the command plot(alleffects(...)) on the two model fits from Section 7.4, and compare the results. Also, use these plots to double check your interpretation of the model coefficients, as shown in the output of summary.

Another option is to use the visreg package, which can be used to make attractive plots of the predictions of a linear model. In the following example we redo Fig. 7.9 using the visreg package.
The following example makes Fig. 7.10.
```

library(visreg)

# Read tab-delimited data

memory <- read.table("eysenck.txt", header=TRUE)

# To make the plots easier to interpret, reorder the Process

# factor by the average number of words remembered (we did this earlier in

# the chapter already for this dataset, it is repeated here).

memory\$Process <- with(memory, reorder(Process, Words, mean))

# Refit the linear model as above.

fit10 <- lm(Words ~ Age*Process, data=memory)

# Here we specify which variable should be on the X axis (Process),

# and which variable should be added with different colours (Age).

visreg(fit10, "Process", by="Age", overlay=TRUE)

```

Here is another example. This time, we include a continuous and a factor variable in the model (Fig. 7.11).
```


# Read data and make sure CO2 treatment is a factor!

pupae <- read.csv("pupae.csv")
pupae$CO2_treatment <- as.factor(pupae$CO2_treatment)

```


Figure 7.10: Visualization of a fitted linear model with the visreg package.
```


# A linear model with a factor and a numeric variable

fit_b <- lm(Frass ~ PupalWeight * CO2_treatment, data=pupae)

# When plotting a model that has interactions, make sure to specify the variable

# that should appear on the X axis (the first argument), and the factor

# variable (the 2nd argument).

visreg(fit_b, "PupalWeight", by="CO2_treatment", overlay=TRUE)

```


Figure 7.11: Visualization of a fitted linear model with a continuous and factor variable using the visreg package.

\subsection*{7.4.2 Using predicted effects to make sense of model output}

Next we show an example of a model where using predicted effects as introduced in Section 7.4.1 is very helpful in understanding model output. For this example, we use measurements of photosynthesis and transpiration of tree leaves in the EucFACE experiment (see Section A. 23 for a description of the data). We are interested in the relationship between photosynthesis and transpiration (the ratio of which is known as the water-use efficiency), and whether this relationship differs with \(\mathrm{CO}_{2}\) treatment. The data are shown in Fig. 7.12.
```

eucgas <- read.csv("eucface_gasexchange.csv")
palette(c("blue","red"))
with(eucgas, plot(Trmmol, Photo, pch=19, col=CO2))
legend("topleft", levels(eucgas\$CO2), pch=19, col=palette())
boxplot(Photo ~ CO2, data=eucgas, col=palette(), ylab="Photo")

```

It seems quite clear from Fig. 7.12 that, at a given Trmmol, Photo is higher in the elevated (Ele) \(\mathrm{CO}_{2}\) treatment. From the boxplot on the right, it also seems more than reasonable to expect that overall, Photo is higher in Ele (when not accounting for the Trmmol covariate).

Let's fit a linear model to confirm this effect.
```


# A linear model with a continuous and a factor predictor, including the interaction.

lmfit <- lm(Photo ~ CO2*Trmmol, data=eucgas)

# Significance of overall model terms (sequential anova)

anova(lmfit)

## Analysis of Variance Table

## 

## Response: Photo

## Df Sum Sq Mean Sq F value Pr(>F)

## CO2 1 322.96 322.96 31.1659 3.142e-07 ***

## Trmmol 1 668.13 668.13 64.4758 7.074e-12 ***

## CO2:Trmmol 1 0.49 0.49 0.0471

## Residuals 80 829.00 10.36

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

```

And the coefficients table from summary:
```


## Estimate Std. Error t value Pr}(>|t|

## (Intercept) 9.1590768 1.9364911 4.7297284 1e-05 ***

## CO2Ele 5.0146388 2.6955506 1.8603393 0.06651

## Trmmol 2.9221253 0.4973512 5.8753756 0e+00 ***

## CO2Ele:Trmmol -0.1538359 0.7090711 -0.2169542 0.82880

# Significance of the individual coefficients:

summary(lmfit)

```

Look at the 'coefficients' table in the summary statement. Four parameters are shown, they can be interpreted as, 1) the intercept for 'Amb', 2) the slope for 'Amb', 3) the difference in the intercept for 'Ele', compared to 'Amb', 4) the difference in the slope for 'Ele', compared to 'Amb'.
It seems that neither the intercept or slope effect of CO 2 is significant here, which is surprising. Also confusing is the fact that the anova statement showed a clear significant effect of CO , so what is going on here?

Figure 7.12: Photosynthesis and leaf transpiration rate (Trmmol) for leaves in elevated (red) and ambient (blue) CO 2 concentration.

First recall that the sequential anova tests each term against a model that includes only the terms preceding it. So, since we added CO 2 as the first predictor, its test in the anova is tested against a model that has no predictors. This is similar in approach to simply performing a \(t\)-test on Photo vs. CO2 (which also shows a significant effect), in other words testing for separation in the right-hand panel of Fig. 7.12. It is clearly a different test from those shown in the summary statement.
To understand the tests of the coefficients, we will plot predictions of the model, together with confidence intervals. The following code makes Fig. 7.13, and we introduce the use of the predict function to estimate fitted values, and confidence intervals, from a fitted model.
```


# Set up a regular sequence of numbers, for which 'Photo' is to be predicted from

xval <- seq(0, max(eucgas\$Trmmol), length=101)

# Two separate dataframes, one for each treatment/

amb_dfr <- data.frame(Trmmol=xval, CO2="Amb")
ele_dfr <- data.frame(Trmmol=xval, CO2="Ele")

# Predictions of the model using 'predict.lm'

# The first argument is the fitted model, the second argument a dataframe

# containing values for the predictor variables.

predamb <- as.data.frame(predict(lmfit, amb_dfr, interval="confidence"))
predele <- as.data.frame(predict(lmfit, ele_dfr, interval="confidence"))

# Plot. Set up the axis limits so that they start at 0, and go to the maximum.

palette(c("blue","red"))
with(eucgas, plot(Trmmol, Photo, pch=19, col=CO2,
xlim=c(0, max(Trmmol)),
ylim=c(0, max(Photo))))

# Add the lines; the fit and lower and upper confidence intervals.

with(predamb, {
lines(xval, fit, col="blue", lwd=2)
lines(xval, lwr, col="blue", lwd=1, lty=2)
lines(xval, upr, col="blue", lwd=1, lty=2)
})
with(predele, {
lines(xval, fit, col="red", lwd=2)
lines(xval, lwr, col="red", lwd=1, lty=2)
lines(xval, upr, col="red", lwd=1, lty=2)
})

```

Try this yourself The above plot can also be easily made with the visreg package, as we have seen already. Use the code visreg (lmfit, "Trmmol", by="CO2", overlay=TRUE) to make a similar plot. Set the x -axis limit with xlim to include the intercept.

The intercept in a linear model is of course the value of the \(Y\) variable where \(X\) is zero. As we can see in Fig. 7.13, the confidence intervals for the regression lines overlap when Trmmol is zero - which is the comparison made in the summary statement for the intercept. We now see why the intercept was not significant, but it says very little about the treatment difference in the range of the data.
Perhaps it is more meaningful to test for treatment differences at a mean value of Trmmol. There are four ways to do this.

Figure 7.13: Predicted relationship between Photo and Trmmol for ambient and elevated CO2 concentrations in the EucFACE leaf gas exchange dataset. Dashed lines are confidence intervals for the regression line.

\section*{Centering the predictor}

The first approach is to recenter the predictor so that the intercept can be interpreted as the value where the predictor (in our case, Trmmol) is at its mean value.
```


# Rescaled transpiration rate

# This is equivalent to Trmmol - mean(Trmmol)

eucgas$Trmmol_center <- scale(eucgas$Trmmol, center=TRUE, scale=FALSE)

# Refit using centered predictor

lmfit2 <- lm(Photo ~ Trmmol_center*CO2, data=eucgas)

```

The coefficients table in the summary statement now shows a highly significant effect for CO2Ele, a difference of about 4.22 units. It is also possible to compute confidence intervals on the coefficients via confint (lmfit2), try this yourself.
```


# Summary of the fit:

summary(lmfit2)

| \#\# | Estimate | Std. Error | t value $\operatorname{Pr}(>\|\mathrm{t}\|)$ |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: |
| \#\# (Intercept) | 19.8846914 | 0.4988568 | 39.8605236 | $<2 \mathrm{e}-16$ | $* * *$ |
| \#\# Trmmol_center | 2.9221253 | 0.4973512 | 5.8753756 | 0 | $0 * *$ |
| \#\# CO2Ele | 4.4499864 | 0.7055393 | 6.3072129 | 0 | $0 * *$ |
| \#\# Trmmol_center:CO2Ele | -0.1538359 | 0.7090711 | -0.2169542 | 0.8288 |  |

```

\section*{Using the effects package}

Another way is to compute the C02 effect at a mean value of Trmmol. This avoids having to refit the model with centered data, and is more flexible.
```


# The effects package calculates effects for a variable by averaging over all other

# terms in the model

library(effects)
Effect("CO2", lmfit)

## 

## CO2 effect

## CO2

## Amb Ele

## 19.88469 24.33468

# confidence intervals can be obtained via

summary(Effect("CO2", lmfit))

## 

## C02 effect

## CO2

## Amb Ele

## 19.88469 24.33468

## 

## Lower 95 Percent Confidence Limits

# CO2

## Amb Ele

## 18.89193 23.34178

## 

## Upper 95 Percent Confidence Limits

## CO2

```
```


## Amb Ele

## 20.87745 25.32757

```

The effects package is quite flexible. For example, we can calculate the predicted effects at any specified value of the predictors, like so (output not shown):
```


# For example, what is the CO2 effect when Trmmol was 3?

summary(Effect("CO2", lmfit, given.values=c(Trmmol=3)))

```

\section*{Least-square means}

The effect size while holding other predictors constant at their mean value is also known as the 'leastsquare mean' (or even 'estimated marginal means'), and is implemented as such in the emmeans package. It is a powerful package, also to make sense of models that are far more complex than the one in this example, as seen in section 7.2.1.1.
```

library(emmeans)
summary(emmeans(lmfit, "CO2"))

## NOTE: Results may be misleading due to involvement in interactions

## CO2 emmean SE df lower.CL upper.CL

## Amb 19.9 0.499 80 18.9 20.9

## Ele 24.3 0.499 80 23.3 25.3

## 

## Confidence level used: 0.95

# emmeans warns that perhaps the results are misleading - this is true for more

# complex models but not a simple one as shown here.

```

\section*{Using the predict function}

Finally, we show that the effects can also be obtained via the use of predict, as we already saw in the code to produce Fig. 7.13.
```


# Predict fitted Photo at the mean of Trmmol, for both CO2 treatments

predict(lmfit, data.frame(Trmmol=mean(eucgas$Trmmol),
            CO2=levels(eucgas$CO2)),
interval="confidence")

## fit lwr upr

## 1 19.88469 18.89193 20.87745

## 2 24.33468 23.34178 25.32757

```

Further reading This example shows that interpretation of main effects (in this case, c02) is not at all straightforward when the model also includes an interaction term (C02:Trmmol). A readable review of this problem is Engqvist 2005, Animal Behaviour 70(4):967-971. There, it is shown that many studies misinterpret the main effects in cases like this.

\subsection*{7.4.3 Quadratic and polynomial terms}

So far we have seen models with just linear terms, but it is straightforward and often necessary to add quadratic (\(x^{2}\)) or higher-order terms (e.g. \(x^{3}\)) when the response variable is far from linear in the pre-
dictors. You can add any transformation of the predictors in an lm model by nesting the transformation inside the I() function, like so:
```

lmq1 <- lm(height ~ diameter + I(diameter^2), data=allom)

```

This model fits both the linear (diameter) and squared terms (I (diameter2̂)) of the predictor, as well as the usual intercept term. If you want to fit all polynomial terms up to some order, you can use the poly function like so,
```

lmq1 <- lm(height ~ poly(diameter, 2), data=allom)

```

This model specification is exactly equivalent to the above, and is more convenient when you have multiple quadratic / polynomial terms and interactions with factor variables.
The following example quickly tests whether a quadratic term improves the model fit of height vs. diameter for the species PIPO in the allometry dataset.
```

pipo <- subset(allom, species == "PIPO")

# Fit model with the quadratic term:

lmq2 <- lm(height ~ diameter + I(diameter^2), data=pipo)

# The very small p-value for the quadratic terms shows that the

# relationship is clearly not linear, but better described with a

# quadratic model.

Anova(lmq2)

## Anova Table (Type II tests)

## 

## Response: height

## Sum Sq Df F value Pr(>F)

## diameter 821.25 1 53.838 5.905e-07 ***

## I(diameter^2) 365.78 1 23.980 0.0001001 ***

## Residuals 289.83 19

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

```

When fitting a quadratic model, it is again very useful to use visreg to inspect the model that is estimated, since it becomes even more difficult to make sense of the various linear, quadratic, and intercept terms, especially when interactions with factor variables are added. Consider this example for the allometry dataset, which makes Fig. ??.
```


# Fit a linear model with linear, quadratic terms, and all species interactions.

allomquadfit <- lm(height ~ poly(diameter, 2)*species, data=allom)

# Inspect summary(allomquadfit) to confirm you cannot possibly make sense of this

# many coefficients.

# But plotting the predictions is much easier to understand:

visreg(allomquadfit, "diameter", by="species", overlay=TRUE)

```


\subsection*{7.5 Generalized Linear Models}

So far we have looked at modelling a continuous response to one or more factor variables (ANOVA), one or more continuous variables (multiple regression), and combinations of factors and continuous variables. We have also assumed that the predictors are normally distributed, and that, as a result, the response will be, too. We used a log-transformation in one of the examples to meet this assumption.
In some cases, there is no obvious way to transform the response or predictors, and in other cases it is nearly impossible. Examples of difficult situations are when the response represents a count or when it is binary (i.e., has only two possible outcomes).

Generalized linear models (GLMs) \({ }^{2}\) extend linear models by allowing non-normally distributed errors. The basic idea is as follows. Suppose you have a response variable \(y\) and one or more predictors (independent variables) that can be transformed into a linear predictor in the same way as in linear models, which we call \(\eta\). Then \(y\) is modelled as some distribution with mean \(\mu\), which itself is related to the predictors through the linear predictor and a link-function, \(g\). Formally,
\[
\begin{equation*}
g(\mu)=\eta \tag{7.2}
\end{equation*}
\]

In practice, the distribution for \(y\) and the link-function are chosen depending on the problem. Logistic regression is an example of a GLM, with a binomial distribution and the link-function
\[
\log \left(\frac{\mu}{1-\mu}\right)=\eta
\]

Another common GLM uses the Poisson distribution, in which case the most commonly used linkfunction is log. This is also called Poisson regression, and it is often used when the response represents counts of items. In the following, we will demonstrate two common GLMs: logistic regression and Poisson regression.

\subsection*{7.5.1 Logistic Regression}

The Titanic dataset (see Section A.12) contains information on the survival of passengers on the Titanic, including ages, gender and passenger class. Many ages are missing, and for this example we will work with only the non-missing data (but note that this is not always the best choice). Refer to Section 3.4 (p. 59) for working with and removing missing values.
```


# Read tab-delimited data

titanic <- read.table("titanic.txt", header=TRUE)

# Complete cases only (drops any row that has a missing value anywhere)

titanic <- titanic[complete.cases(titanic),]

# Construct a factor variable based on 'Survived'

titanic$Survived <- factor(ifelse(titanic$Survived==1, "yes", "no"))

# Look at a standard summary

summary(titanic)

```

\footnotetext{
\({ }^{2}\) The term General Linear Model, which you may see used sometimes, is not the same as a GLM, although some statistics packages use GLM to mean general linear model, and use another term for generalized linear model.
}
\begin{tabular}{|c|c|c|c|c|}
\hline \#\# & Name & PClass & Age & Sex \\
\hline \#\# & Carlsson, Mr Frans Olof : 2 & 1st:226 & Min. : 0.17 & female:288 \\
\hline \#\# & Connolly, Miss Kate : 2 & 2nd:212 & 1st Qu.:21.00 & male :468 \\
\hline \#\# & Kelly, Mr James : 2 & 3rd:318 & Median :28.00 & \\
\hline \#\# & Abbing, Mr Anthony : 1 & & Mean :30.40 & \\
\hline \#\# & Abbott, Master Eugene Joseph: 1 & & 3rd Qu.:39.00 & \\
\hline \#\# & Abbott, Mr Rossmore Edward : 1 & & Max. \(\quad 71.00\) & \\
\hline \#\# & (Other) :747 & & & \\
\hline \#\# & Survived & & & \\
\hline \#\# & no : 443 & & & \\
\hline \#\# & yes:313 & & & \\
\hline \#\# & & & & \\
\hline
\end{tabular}

The idea here is to find out whether the probability of survival depends on the passenger's Age, Sex and PClass (passenger class). Before we proceed, it is always a good idea to start by visualizing the data to find out what we are dealing with (and to make sure we will interpret the model output correctly). If we plot two factor variables against each other, \(\mathbf{R}\) produces quite a useful plot, as the following example demonstrates (Fig. 7.14).
```

par(mfrow=c(1,2), mgp=c(2,1,0))
with(titanic, plot(Sex, Survived, ylab="Survived", xlab="Sex"))
with(titanic, plot(PClass, Survived, ylab="Survived", xlab="Passenger class"))

```

In logistic regression we model the probability of the " 1 " response (in this case the probability of survival). Since probabilities are between o and 1, we use a logistic transform of the linear predictor, where the linear predictor is of the form we would like to use in the linear models above. If \(\eta\) is the linear predictor and \(Y\) is the binary response, the logistic model takes the form,
\[
\begin{equation*}
P(Y=1)=\frac{1}{1+e^{-\eta}} \tag{7.3}
\end{equation*}
\]

These models are easily fit with glm. It has a similar interface to lm with a couple of additional features. To fit a logistic regression to the (modified) titanic data we use,
```


# Fit a logistic regression

fit11 <- glm(Survived~Age+Sex+PClass, data=titanic, family=binomial)
summary(fit11)

## 

## Call:

## glm(formula = Survived ~ Age + Sex + PClass, family = binomial,

## data = titanic)

## 

## Deviance Residuals:

| \#\# | Min | 1Q | Median | 3Q | Max |
| :--- | ---: | ---: | ---: | ---: | ---: |
| \#\# | -2.7226 | -0.7065 | -0.3917 | 0.6495 | 2.5289 |

## 

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 3.759662 0.397567 9.457 < 2e-16 ***

## Age -0.039177 0.007616 -5.144 2.69e-07 ***

## Sexmale -2.631357 0.201505 -13.058 < 2e-16 ***

```


Figure 7.14: Probability of survival versus passenger class and sex for the titanic data.

Figure 7.15: Fitted effects for the Titanic logistic regression example.
```


## PClass2nd -1.291962 0.260076 -4.968 6.78e-07 ***

## PClass3rd -2.521419 0.276657 -9.114 < 2e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## 

## (Dispersion parameter for binomial family taken to be 1)

## 

## Null deviance: 1025.57 on 755 degrees of freedom

## Residual deviance: 695.14 on 751 degrees of freedom

## AIC: 705.14

## 

## Number of Fisher Scoring iterations: 5

```

The text family=binomial specifies that we wish to perform a logistic regression. The summary shows that all terms are significant. Interpreting the coefficients has to be done with care. For binary factors (such as Sex) they can be interpreted as a log-odds ratio, but this is beyond the scope of this text. The signs of the coefficients tell us about how the factor variable affects the probability of survival. In this example, all of them are negative so we can conclude: 1) an increase in age decreases the chance of survival, 2) being male decreases survival, 3) being in 2nd or 3rd class decrease survival with 3 rd being worse than 2 nd.
The function allEffects from the effects package can be used here to visualize the effects (Fig. 7.15).
```


# The 'type' argument is used to back-transform the probability

# (Try this plot without that argument for comparison)

plot(allEffects(fit11), type="response")

```

\subsection*{7.5.1.1 Tabulated data}

Sometimes the available data are not at an individual level (as in the Titanic example above), but counts have already been aggregated into various factors.

We will first aggregate the Titanic data into a table of counts, and then show how we can still fit a glm
for a logistic regression.
Suppose instead of age we only know the adult status of passengers.
```

titanic$AgeGrp <- factor(ifelse(titanic$Age>18, "Adult", "Child"))

```

We can then count the numbers of survivors and non-survivors,
```


# Count the number of survivors and non-survivors by various factor combinations

titanic2 <- aggregate(cbind(Survived=="yes",Survived=="no") ~ AgeGrp+Sex+PClass,
data=titanic, sum)
titanic2

## AgeGrp Sex PClass V1 V2

## 1 Adult female 1st 87 4

## 2 Child female 1st 9 1

## 3 Adult male 1st 37 81

## 4 Child male 1st 6 1

## 5 Adult female 2nd 58 9

## 6 Child female 2nd 17 1

## 7 Adult male 2nd 10 99

## 8 Child male 2nd 11 7

## 9 Adult female 3rd 27 36

## 10 Child female 3rd 19 20

## 11 Adult male 3rd 25 157

## 12 Child male 3rd 7 27

# Tidy up the names

names(titanic2)[4:5] <- c("survivors", "nonsurvivors")

```

Use the following example to fit a logistic regression when your data looks like the above. We will again plot the fitted effects (Fig. 7.16). As you can see, the conclusions are the same as before.
```

fit12 <- glm(cbind(survivors, nonsurvivors)~AgeGrp+Sex+PClass,
data=titanic2, family=binomial)
summary(fit12)

## 

## Call:

## glm(formula = cbind(survivors, nonsurvivors) ~ AgeGrp + Sex +

## PClass, family = binomial, data = titanic2)

## 

## Deviance Residuals:

## Min 1Q Median 3Q Max

## -3.1339 -1.2940 0.8257 2.0386 2.9973

## 

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 2.0682 0.2196 9.419 < 2e-16 ***

## AgeGrpChild 0.8478 0.2519 3.365 0.000765 ***

## Sexmale -2.5658 0.1980 -12.960 < 2e-16 ***

## PClass2nd -0.8771 0.2353 -3.728 0.000193 ***

## PClass3rd -2.0428 0.2425 -8.423 < 2e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## 

## (Dispersion parameter for binomial family taken to be 1)

## 

```


Figure 7.16: Fitted effects for the Titanic logistic regression example, when fitted using tabulated data.
```


## Null deviance: 361.947 on 11 degrees of freedom

## Residual deviance: 48.528 on 7 degrees of freedom

## AIC: 101.01

## 

## Number of Fisher Scoring iterations: 5

# Effects plot

plot(allEffects(fit12))

```

\subsection*{7.5.2 Poisson regression}

For this example we return to the Age and Memory dataset. In this dataset, the response variable is a count of the number of words recalled by subjects using one of four different methods for memorization. When the response variable represents a count, a Poisson regression is often appropriate.

The following code performs a Poisson regression of the Age and Memory data. See Fig. 7.17 for the fitted effects.
```


# Fit a generalized linear model

fit13 <- glm(Words~Age*Process, data=memory, family=poisson)
summary(fit13)

## 

## Call:

## glm(formula = Words ~ Age * Process, family = poisson, data = memory)

## 

## Deviance Residuals:

| \#\# | Min | $1 Q$ | Median | 3Q | Max |
| ---: | ---: | ---: | ---: | ---: | ---: |
| \#\# | -2.2903 | -0.4920 | -0.1987 | 0.5623 | 2.3772 |

## 

## Coefficients:

## Estimate Std. Error z value Pr}(>|z|

## (Intercept) 1.94591 0.11952 16.281 < 2e-16 ***

```
```

| \#\# AgeYounger | -0.07411 | 0.17225 | -0.430 | 0.667026 |  |
| :--- | ---: | ---: | ---: | :--- | :--- |
| \#\# ProcessRhyming | -0.01439 | 0.16964 | -0.085 | 0.932406 |  |
| \#\# ProcessAdjective | 0.45199 | 0.15289 | 2.956 | 0.003115 | ** |
| \#\# ProcessImagery | 0.64934 | 0.14747 | 4.403 | $1.07 e-05$ | *** |
| \#\# ProcessIntentional | 0.53900 | 0.15040 | 3.584 | 0.000339 *** |  |
| \#\# AgeYounger:ProcessRhyming | 0.17073 | 0.23942 | 0.713 | 0.475769 |  |
| \#\# AgeYounger:ProcessAdjective | 0.37084 | 0.21335 | 1.738 | 0.082179 . |  |
| \#\# AgeYounger:ProcessImagery | 0.34675 | 0.20692 | 1.676 | 0.093777 | . |
| \#\# AgeYounger:ProcessIntentional | 0.54931 | 0.20781 | 2.643 | 0.008210 ** |  |

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## 

## (Dispersion parameter for poisson family taken to be 1)

## 

## Null deviance: 227.503 on 99 degrees of freedom

## Residual deviance: 60.994 on 90 degrees of freedom

## AIC: 501.32

## 

## Number of Fisher Scoring iterations: 4

# Look at an ANOVA of the fitted model, and provide likelihood-ratio tests.

Anova(fit13)

## Analysis of Deviance Table (Type II tests)

## 

## Response: Words

## LR Chisq Df Pr(>Chisq)

## Age 20.755 1 5.219e-06 ***

## Process 137.477 4 < 2.2e-16 ***

## Age:Process 8.277 4 0.08196 .

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

# Plot fitted effects

plot(allEffects(fit13))

```

Remember that when we fit this as a linear model (using 1m), we found that the interaction term was highly significant. This time, when we used Poisson regression, the interaction is no longer significant. However, the default link for Poisson regression is log. This means that the mean \(\mu\) in this case depends on the factors Age and Process in a multiplicative fashion, whereas in the linear model (using 1 m) it was additive without the interaction. In other words, we have now modelled the interaction implicitly by using the log link function.

Note that in example above we use the anova function with the option test="LRT", which allows us to perform a Likelihood Ratio Test (LRT). This is appropriate for GLMs because the usual F-tests may not be inaccurate when the distribution is not normal.

There are diagnostic plots for GLMs just like linear models, but these are beyond the scope of this text.
Further reading An excellent book on linear modelling, including many tools that we did not cover in this chapter is: Fox, John, and Sanford Weisberg. An \(R\) companion to applied regression. Sage, 2010. This book describes the car package.

Age*Process effect plot

Process

Figure 7.17: Fitted effects for a Poisson regression of the Age and Memory data. Note the log scale of the \(y\)-axis.

\subsection*{7.6 Functions used in this chapter}

For functions not listed here, please refer to the index at the end of this book.
\begin{tabular}{lll}
\multicolumn{1}{c}{ Function } & \multicolumn{1}{c}{ What it does } & Example use \\
\hline lm & \begin{tabular}{l}
Linear models, including regression \\
models, ANOVAs, and ANCOVAs.
\end{tabular} & Throughout this chapter \\
glm & \begin{tabular}{l}
Generalized linear models, similar to \\
lm but allows various non-normally dis- \\
tributed errors.
\end{tabular} & Section 7.5, p. 200 \\
emmeans & \begin{tabular}{l}
From the emmeans package. Very use- \\
ful for multiple comparisons. Inter- \\
pret output with the summary, pairs \\
and pwpp functions, plus cld from the
\end{tabular} & \\
anova & \begin{tabular}{l}
multcomp package. \\
\\
\\
Using anova on two models performs \\
a likelihood-ratio test. We do not rec- \\
ommend its use on a single model, use
\end{tabular} & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Function & What it does & Example use \\
\hline Anova & From the car package. Analysis of variance table for fitted models, showing marginal tests for main effects and interactions (order of variables does not matter.) & Anova(model1) \\
\hline drop1 & Tests of significance for main effects and interactions in a fitted model, dropping one term at a time. Equivalent to Anova with default settings. & drop1(model1, test="F") \\
\hline AIC & Akaike's Information Criterion - lower is better. Can also be used on many fitted models at once for comparison. & AIC(model1, model2) \\
\hline allEffects & From the effects package. Convenient function to estimate and plot 'effects' from a fitted model - highly recommended to avoid misinterpretation of fitted models. & plot(allEffects(model1)) \\
\hline visreg & From the visreg package. Similar to allEffects, makes more attractive plots but slightly less flexible overall. & visreg(model1, "xvar", by="facvar") \\
\hline
\end{tabular}

\subsection*{7.7 Exercises}

In these exercises, we use the following colour codes:
■ Easy: make sure you complete some of these before moving on. These exercises will follow examples in the text very closely.
- Intermediate: a bit harder. You will often have to combine functions to solve the exercise in two steps.
- Hard: difficult exercises! These exercises will require multiple steps, and significant departure from examples in the text.

We suggest you complete these exercises in an \(\mathbf{R}\) markdown file. This will allow you to combine code chunks, graphical output, and written answers in a single, easy-to-read file.

\subsection*{7.7.1 One-way ANOVA}
1. For the Titanic data (see Section A.12, p. 247), use a one-way ANOVA to compare the average passenger age by passenger class. (Note: by default, 1m will delete all observations where Age is missing.)
2. - For the Age and Memory data (Section A.11, p. 247), make a subset of the Older subjects, and conduct a one-way ANOVA to compare words remembered by memory technique.

\subsection*{7.7.2 Two-way ANOVA}
1. Using the pupae dataset, fit a two-way ANOVA to compare PupalWeight to Gender and CO2_treatment. Which main effects are significant? After reading in the pupae data, make sure to convert Gender and CO2_treatment to a factor first (see Section 3.2, p. 55).
2. Is there an interaction between Gender and C02_treatment?
3. \(\square\) Repeat the above using T_treatment instead of C02_treatment.
4. Recall Exercise 6.5.6 (p. 171). Perform a two-way ANOVA to test irrigation and fertilisation effects on tree diameter. Compare the results. Hint: the treatments are not coded by 'irrigation' or 'fertilization', you must first make two new variables based on the treat variable in the dataframe.

\subsection*{7.7.3 Multiple regression}
1. Using the Pulse data (see Section A.9, p. 246) fit a multiple linear regression of Pulse1 against Age, Weight and Height (add the variables to the model in that order).
2. Are any terms significant at the \(5 \%\) level?
3. \(■\) Generate some diagnostic plots of the fitted models.

\subsection*{7.7.4 Linear Model with factor and numeric variables}
1. Repeat exercise 7.7.3, and also include the factor Exercise. You will need to first convert Exercise to a factor as it is stored numerically in the CSV file. Does adding Exercise improve the model?
2. Using the same data, fit a model of Pulse2 as a function of Pulse1 and Ran as main effects only (Note: convert Ran to a factor first). Use the effects package to inspect the model fit, and help understand the estimated coefficients in the model.
3. Now add the interaction between Pulse1 and Ran. Is it significant? Also look at the effects plot, how is it different from the model without an interaction?
4. \(\quad\) Add (factor versions of) Alcohol, Smokes and Exercise to this model, and inspect whether the model improved.

\subsection*{7.7.5 Logistic regression}
1. \(\square\) Using the Pulse data once more, build a model to see if Pulse2 can predict whether people were in the Ran group. Make sure that Ran is coded as a factor.
2. \(\quad\) The visreg package is very helpful in visualizing the fitted model. For the logistic regression you just fit, run the following code and make sure you understand the output. (This code assumes you called the object fit6, if not change fit6 to the name you used.)
library (visreg)
visreg(fit6, scale="response")

\subsection*{7.7.6 Generalized linear model (GLM)}
1. First run the following code to generate some data,
```

len <- 21
x <- seq(0,1,length=len)
y <- rpois(len, exp(x-0.5))

```
2. \(■\) Fit a Poisson GLM to model \(y\) on \(x\). Is \(x\) significant in the model?
3. \(\quad\) Repeat above with a larger sample size (e.g., len <- 101). Compare the results.
4. The memory data were analysed assuming a normal error distribution in Section 7.2 and using a Poisson error distribution in Section 7.5, and each approach resulted in a different outcome for the significance of the interaction term. The participants in the study were asked to remember up to 27 words, not an unlimited number, and some of the participants were remembering close to this upper limit. Therefore, it may make sense to think of the response as consisting of a number of 'successes' and a number of 'failures', as we do in a logistic regression. Use glm to model the response using a binomial error distribution. Refer to Section 7.5.1.1 (p. 203) for a similar example.

\section*{Chapter 8}

\section*{Functions, lists and loops}

\subsection*{8.1 Writing simple functions}

We have already used many built-in functions throughout this tutorial, but you can become very efficient at complex data tasks when you write your own simple functions. Writing your own functions can help with tasks that are carried out many times, which would otherwise result in a lot of code.

For example, suppose you frequently convert units from pounds to kilograms. It would be useful to have a function that does this, so you don't have to type the conversion factor every time. This is also good practice, as it reduces the probability of making typos.
```


# This function takes a 'weight' argument and multiplies it with some number

# to return kilograms.

poundsToKg <- function(weight){
weight * 0.453592
}

```

We can use this function just like any other in \(\mathbf{R}\), for example, let's convert 'weight' to kilograms in the weightloss data (Section A.5).
```


# Read data

weightloss <- read.csv("weightloss.csv")

# Convert weight to kg.

weightloss$Weight <- poundsToKg(weightloss$Weight)

```

Let's write a function for the standard error of the mean, a function that is not built-in in \(\mathbf{R}\).
```


# Compute the standard error of the mean for a vector

SEmean <- function(x){
se <- sd(x) / sqrt(length(x))
return(se)
}

```

Here, the function SEmean takes one 'argument' called x (i.e., input), which is a numeric vector. The standard error for the mean is calculated in the first line, and stored in an object called se, which is then returned as output. We can now use the function on a numeric vector like this:
```


# A numeric vector

unifvec <- runif(10, 1,2)

```
```


# The sample mean

mean(unifvec)

## [1] 1.506451

# Standard error for the mean

SEmean(unifvec)

## [1] 0.09723349

```

Try this yourself You can use functions that you defined yourself just like any other function, for example in summaryBy. First read in the SEmean function defined in the example above, and then use the cereal data to calculate the mean and SE of rating by Manufacturer (or use data of your choosing).

\section*{Functions with multiple arguments}

Functions can also have multiple arguments. The following very simple function takes two numbers, and finds the absolute difference between them, using abs.
```


# Define function

absDiff <- function(num1,num2)abs(num1 - num2)

# Test it with two numbers:

absDiff(5,1)

## [1] 4

# As in many functions in R, you can also give multiple values

# as an argument.

# The following returns the absolute difference between

# 1 and 3, then 5 and 6, and 9 and 0 (in that order).

absDiff(c(1,5,9),c(3,6,0))

## [1] 2 1 9

```

\section*{Functions can return many results}

What if a function should return not just one result, as in the examples above, but many results?
For example, this function computes the standard deviation and standard error of a vector, and returns both stored in a vector. Note that we also use the SEmean function, which we defined above.
```


# An function that computes the SE and SD of a vector

seandsd <- function(x){
seresult <- SEmean(x)
sdresult <- sd(x)
\# Store results in a vector with names
vec <- c(seresult, sdresult)
names(vec) <- c("SE","SD")
return(vec)
}

```
```


# Test it:

x <- rnorm(100, mean=20, sd=4)
seandsd(x)
\#\# SE SD

## 0.4343727 4.3437272

```

\section*{Functions without arguments}

Sometimes, a function takes no arguments (input) at all. Consider this very helpful example.
```

sayhello <- function()message("Hello!")
sayhello()

## Hello!

```

We will return to defining our own functions when we look at applying functions many times to sections of a dataframe (Section 8.2.2).

\subsection*{8.2 Working with lists}

Sofar, we have worked a lot with vectors, with are basically strings of numbers or bits of text. In a vector, each element has to be of the same data type. Lists are a more general and powerful type of vector, where each element of the list can be anything at all. This way, lists are a very flexible type of object to store a lot of information that may be in different formats.

Lists can be somewhat daunting for the beginning R user, which is why most introductory texts and tutorials skip them altogether. However, with some practice, lists can be mastered from the start. Mastering a few basic skills with lists can really help increase your efficiency in dealing with more complex data analysis tasks.
To make a list from scratch, you simply use the list function. Here is a list that contains a numeric vector, a character vector, and a dataframe:
```

mylist <- list(a=1:10, txt=c("hello","world"), dfr=data.frame(x=c(2,3,4),y=c(5,6,7)))

```

\section*{Indexing lists}

To extract an element from this list, you may do this by its name ('a','txt' or 'dfr' in this case), or by the element number (\(1,2,3\)). For lists, we use a double square bracket for indexing. Consider these examples,
```


# Extract the dataframe:

mylist[["dfr"]]

## x y

## 1 2 5

## 2 3 6

## 3 4 7

# Is the same as:

mylist\$dfr

```
```


## x y

## 1 2 5

## 2 3 6

## 3 4 7

# Extract the first element:

mylist[[1]]

## [1] 1. 1

```

Note that in these examples, the contents of the elements of the list are returned (for 'dfr', a dataframe), but the result itself is not a list anymore. If we select multiple elements, the result should still be a list. To do this, use the single square bracket.

Look at these examples:
```


# Extract the 'a' vector, result is a vector:

mylist[['a']]

## [1] 11 2 2 3

# Extract the 'a' vector, result is a list:

mylist['a']

## \$a

## [1] 1. 1 2 [ 3 [llllllllll

# Extract multiple elements (result is still a list):

mylist[2:3]

## \$txt

## [1] "hello" "world"

## 

## \$dfr

## x y

## 1 2 5

## 2 3 6

## 3 4 7

```

\section*{Converting lists to dataframes or vectors}

Although lists are the most flexible way to store data and other objects in larger, more complex, analyses, ultimately you would prefer to output as a dataframe or vector.
Let's look at some examples using do. call (rbind, . . .) and unlist.
```


# A list of dataframes:

dfrlis <- list(data1=data.frame(a=1:3,b=2:4), data2=data.frame(a=9:11,b=15:17))
dfrlis

## \$data1

## a b

## 1 1 2

## 2 2 3

## 3 3 4

## 

## \$data2

## a b

## 1 9 15

```
```


## 2 10 16

## 3 11 17

# Since both dataframes in the list have the same number of columns and names,

# we can 'successively row-bind' the list like this:

do.call(rbind, dfrlis)

## a b

## data1.1 1 2

## data1.2 2 3

## data1.3 3 4

## data2.1 9 15

## data2.2 10 16

## data2.3 11 17

# A list of vectors:

veclis <- list(a=1:3, b=2:4, f=9:11)

# In this case, we can use the 'unlist' function, which will

# successively combine the three vectors into one:

unlist(veclis)

## a1 a2 a3 b1 b2 b3 f1 f2 f3

## 110lllllllll

```

In real-world applications, some trial-and-error will be necessary to convert lists to more pretty formats.

\section*{Combining lists}

Combining two lists can be achieved using \(c()\), like this:
```

veclis <- list(a=1:3, b=2:4, f=9:11)
qlis <- list(q=17:15)
c(veclis,qlis)

## \$a

## [1] 1 2 3

## 

## \$b

## [1] 2 3 4

## 

## \$f

## [1] 9 10 11

## 

## \$q

## [1] 17 16 15

# But be careful when you like to quickly add a vector

# the 'veclis'. You must specify list() like this

veclis <- c(veclis, list(r=3:1))

```

\section*{Extracting output from built-in functions}

One reason to gain a better understanding of lists is that many built-in functions return not just single numbers, but a diverse collection of outputs, organized in lists. Think of the linear model function (lm),
it returns a lot of things at the same time (not just the p -value).
Let's take a closer look at the lm output to see if we can extract the adjusted \(\mathrm{R}^{2}\).
```


# Read data

allom <- read.csv("Allometry.csv")

# Fit a linear model

lmfit <- lm(height ~ diameter, data=allom)

# And save the summary statement of the model:

lmfit_summary <- summary(lmfit)

# We already know that simply typing 'summary(lmfit)' will give

# lots of text output. How to extract numbers from there?

# Let's look at the structure of lmfit:

str(lmfit_summary)

## List of 11

## \$ call : language lm(formula = height ~ diameter, data = allom)

## \$ terms :Classes 'terms', 'formula' language height ~ diameter

## .. ..- attr(*, "variables")= language list(height, diameter)

## .. ..- attr(*, "factors")= int [1:2, 1] 0 1

## .. .. ..- attr(*, "dimnames")=List of 2

## .. .. .. ..\$ : chr [1:2] "height" "diameter"

## .. .. .. ..\$ : chr "diameter"

## .. ..- attr(*, "term.labels")= chr "diameter"

## .. ..- attr(*, "order")= int 1

# The output of lm is a list, so we can look at the names of \# that list as well:

names(lmfit_summary)

```
```


## [1] "call" "terms" "residuals" "coefficients"

```
[1] "call" "terms" "residuals" "coefficients"
[5] "aliased" "sigma" "df" "r.squared"
[5] "aliased" "sigma" "df" "r.squared"
[9] "adj.r.squared" "fstatistic" "cov.unscaled"
```


## [9] "adj.r.squared" "fstatistic" "cov.unscaled"

```

So, now we can extract results from the summary of the fitted regression. Also look at the help file ?summary. 1 m , in the section 'Values' for a description of the fields contained here.
To extract the adjusted \(\mathrm{R}^{2}\), for example:
```

lmfit_summary[["adj.r.squared"]]

## [1] 0.7639735

# Is the same as:

lmfit_summary\$adj.r.squared

## [1] 0.7639735

```

This sort of analysis will be very useful when we do many regressions, and want to summarize the results in a table.

Try this yourself Run the code in the above examples, and practice extracting some other elements from the linear regression. Compare the output to the summary of the 1 m fit (that is, compare it to what summary (lmfit) shows on screen).

\subsection*{8.2.1 Creating lists from dataframes}

For more advanced analyses, it is often necessary to repeat a particular analysis many times, for example for sections of a dataframe.
Using the allom data for example, we might want to split the dataframe into three dataframes (one for each species), and repeat some analysis for each of the species. One option is to make three subsets (using subset), and repeating the analysis for each of them. But what if we have hundreds of species?
A more efficient approach is to split the dataframe into a list, so that the first element of the list is the dataframe for species 1, the 2nd element species 2, and so on. In case of the allom dataset, the resulting list will have three components.

Let's look at an example on how to construct a list of dataframes from the allom dataset, one per species:
```


# Read allom data and make sure 'species' is a factor:

```
allom <- read.csv("Allometry.csv")
is.factor (allom\$species)
\#\# [1] TRUE
\# The levels of the factor variable 'species'
levels (allom\$species)
\#\# [1] "PIMO" "PIPO" "PSME"
\# Now use 'split' to construct a list:
allomsp <- split(allom, allom\$species)
\# The length of the list should be 3, with the names equal to the
\# original factor levels:
length(allomsp)
\#\# [1] 3
names (allomsp)
\#\# [1] "PIMO" "PIPO" "PSME"

Try this yourself Run the code in the above example, and confirm that allomsp[[2]] is identical to taking a subset of allom of the second species in the dataset (where 'second' refers to the second level of the factor variable species, which you can find out with levels).

Let's look at an example using the hydro data. The data contains water levels of a hydrodam in Tasmania, from 2005 to 2011 (see Section A.3).
```


# Read hydro data, and convert Date to a proper date class.

hydro <- read.csv("hydro.csv")
library(lubridate)
hydro$Date <- dmy(as.character(hydro$Date))
hydro$year <- year(hydro$Date)

# Look at the Date range:

range(hydro\$Date)

## [1] "2005-08-08" "2011-08-08"

# Let's get rid of the first and last years (2005 and 2011) since they are incomplete

```
```

hydro <- subset(hydro, !year %in% c(2005,2011))

# Now split the dataframe by year. This results in a list, where every

# element contains the data for one year:

hydrosp <- split(hydro, hydro\$year)

# Properties of this list:

length(hydrosp)

## [1] 5

names(hydrosp)

## [1] "2006" "2007" "2008" "2009" "2010"

```

To extract one element of the two lists that we created (allomsp and hydrosp), recall the section on indexing lists.

\subsection*{8.2.2 Applying functions to lists}

We will introduce two basic tools that we use to apply functions to each element of a list: sapply and lapply. The lapply function always returns a list, whereas sapply will attempt to simplify the result. When the function returns a single value, or a vector, sapply can often be used. In practice, try both and see what happens!

\section*{Using sapply}

First let's look at some simple examples:
```


# Let's make a simple list with only numeric vectors (of varying length)

numlis <- list(x=1000, y=c(2.1,0.1,-19), z=c(100,200,100,100))

# For the numeric list, let's get the mean for every element, and count

# the length of the three vectors.

# Here, sapply takes a list and a function as its two arguments,

# and applies that function to each element of the list.

sapply(numlis, mean)

## x y y r

## 1000.0 -5.6 125.0

sapply(numlis, length)

## x y z

## 1 3 4

```

You can of course also define your own functions, and use them here. Let's look at another simple example using the numlis object defined above.

For example,
```


# Let's find out if any diameters are duplicated in the allom dataset.

# A function that does this would be the combination of 'any' and 'duplicated',

anydup <- function(vec)any(duplicated(vec))

# This function returns TRUE or FALSE

# Apply this function to numlis (see above):

```
```

sapply(numlis, anydup)

## x y z

## FALSE FALSE TRUE

# You can also define the function on the fly like this:

sapply(numlis, function(x)any(duplicated(x)))

## x y z

## FALSE FALSE TRUE

```

Now, you can use any function in sapply as long as it returns a single number based on the element of the list that you used it on. Consider this example with strsplit.
```


# Recall that the 'strsplit' (string split) function usually returns a list of values.

# Consider the following example, where the data provider has included the units in

# the measurements of fish lengths. How do we extract the number bits?

fishlength <- c("120 mm", "240 mm", "159 mm", "201 mm")

# Here is one solution, using strsplit

strsplit(fishlength," ")

## [[1]]

## [1] "120" "mm"

## 

## [[2]]

## [1] "240" "mm"

## 

## [[3]]

## [1] "159" "mm"

## 

## [[4]]

## [1] "201" "mm"

# We see that strsplit returns a list, let's use sapply to extract only

# the first element (the number)

splitlen <- strsplit(fishlength," ")
sapply(splitlen, function(x)x[1])

## [1] "120" "240" "159" "201"

# Now all you need to do is use 'as.numeric' to convert these bits of text to numbers.

```

The main purpose of splitting dataframes into lists, as we have done above, is so that we can save time with analyses that have to be repeated many times. In the following examples, you must have already produced the objects hydrosp and allomsp (from examples in the previous section).Both those objects are lists of dataframes, that is, each element of the list is a dataframe in itself. Let's look at a few examples with sapply first.
```


# How many observations per species in the allom dataset?

sapply(allomsp, nrow)

## PIMO PIPO PSME

# Here, we applied the 'nrow' function to each separate dataframe.

# (note that there are easier ways to find the number of observations per species!,

# this is just illustrating sapply.)

# Things get more interesting when you define your own functions on the fly:

```
```

sapply(allomsp, function(x)range(x\$diameter))

## PIMO PIPO PSME

## [1,] 6.48 4.83 5.33

## [2,] 73.66 70.61 69.85

# Here, we define a function that takes 'x' as an argument:

# sapply will apply this function to each element of the list,

# one at a time. In this case, we get a matrix with ranges of the diameter per species.

# How about the correlation of two variables, separate by species:

sapply(allomsp, function(x)cor(x$diameter, x$height))

## PIMO PIPO PSME

## 0.9140428 0.8594689 0.8782781

# For hydro, find the number of days that storage was below 235, for each year.

sapply(hydrosp, function(x)sum(x\$storage < 235))

| $\# \#$ | 2006 | 2007 | 2008 | 2009 | 2010 |
| :--- | ---: | ---: | ---: | ---: | ---: |
| $\# \#$ | 0 | 18 | 6 | 0 | 0 |

```

\section*{Using lapply}

The lapply function is much like sapply, except it always returns a list.
```

For example,

# Get a summary of the hydro dataset by year:

lapply(hydrosp, summary)

## \$`2006`

## Date storage year

## Min. :2006-01-02 Min. :411.0 Min. :2006

## 1st Qu.:2006-04-01 1st Qu.:449.5 1st Qu.:2006

## Median :2006-06-29 Median :493.0 Median :2006

## Mean :2006-06-29 Mean :514.3 Mean :2006

## 3rd Qu.:2006-09-26 3rd Qu.:553.8 3rd Qu.:2006

## Max. :2006-12-25 Max. :744.0 Max. :2006

## 

## \$`2007`

```

Suppose you have multiple similar datasets in your working directory, and you want to read all of these into one list, use lapply like this (run this example yourself and inspect the results).
```


# Names of your datasets:

filenames <- c("pupae.csv","pupae.csv","pupae.csv")

# (This toy example will read the same file three times).

# Read all files into one list,

alldata <- lapply(filenames, read.csv)

# Then, if you are sure the datasets have the same number of columns and names,

# use do.call to collapse the list:

dfrall <- do.call(rbind, alldata)

```

Try this yourself Recall the use of dir to list files, and even to find files that match a specific pattern (see Section 1.8). Read all CSV files in your working directory (or elsewhere) into a single list, and count the number of rows for each dataframe.

Finally, we can use lapply to do all sorts of complex analyses that return any kind of object. The use of lapply with lists ensures that we can organize even large amounts of data in this way.

Let's do a simple linear regression of log(leafarea) on log(diameter) for the allom dataset, by species:
```


# Run the linear regression on each element of the list, store in a new object:

lmresults <- lapply(allomsp, function(x)lm(log10(leafarea) ~ log10(diameter), data=x))

# Now, lmresults is itself a list (where each element is an object as returned by lm)

# We can extract the coefficients like this:

sapply(lmresults, coef)

## PIMO PIPO PSME

## (Intercept) -0.3570268 -0.7368336 -0.3135996

## log10(diameter) 1.5408859 1.6427773 1.4841361

# This shows the intercept and slope by species.

# Also look at (results not shown):

# lapply(lmresults, summary)

# Get R2 for each model. First write a function that extracts it.

getR2 <- function(x)summary(x)\$adj.r.squared
sapply(lmresults, getR2)
\#\# PIMO PIPO PSME

## 0.8738252 0.8441844 0.6983126

```

Try this yourself Try to fully understand the difference between sapply and lapply by using lapply in some of the examples where we used sapply (and vice versa).

Try this yourself The above example shows a general way in which you can analyze many fitted models at once. A more convenient method to summarize many models is to us the broom package, and in particular the glance function. Try this code (install the broom package first): library(broom)
sapply(lmresults, glance)

\subsection*{8.3 Loops}

Loops can be useful when we need to repeat certain analyses many times, and it is difficult to achieve this with lapply or sapply. To understand how a for loop works, look at this example:
```

for(i in 1:5){
message(i)
}

## 1

## 2

## 3

```
```


## 4

## 5

```

Here, the bit of code between is executed five times, and the object i has the values \(1,2,3,4\) and 5 , in that order. Instead of just printing i as we have done above, we can also index a vector with this object:
```


# make a vector

myvec <- round(runif(5),1)
for(i in 1:length(myvec)){
message("Element ", i, " of the vector is: ", myvec[i])
}

## Element 1 of the vector is: 0.8

## Element 2 of the vector is: 0

## Element 3 of the vector is: 0.8

## Element 4 of the vector is: 0.8

## Element 5 of the vector is: 0.8

```

Note that this is only a toy example: the same result can be achieved by simply typing myvec.
Now let's look at a useful application of a for loop: producing multiple plots in a pdf, using the allomsp object we created earlier.
This bit of code produces a pdf in your current working directory. If you can't find it, recall that you can use getwd() to get the current working directory.
```


# Open a pdf to send the plots to:

pdf("Allom plot by species.pdf", onefile=TRUE)
for(i in 1:3){
with(allomsp[[i]],
plot(diameter, leafarea, pch=15, xlim=c (0,80), ylim=c (0,450),
main=levels(allom\$species)[i]))
}

# Close the pdf (important!)

dev.off()

```

Here, we create three plots (i goes from 1 to 3), every time using a different element of the list allomsp. First, i will have the value 1, so that we end up using the dataframe allomsp [[1]], the first element of the list. And so on. Take a look at the resulting PDF to understand how the code works.

Note: On windows (with Adobe reader) If the pdf ('Allom plot by species.pdf') is open, the above will fail. If you try this anyway, close the pdf and try again. You may have to run the command dev. off() another time to make sure the device is ready.

Another way to achieve the same result is to avoid splitting the dataframe into a list first, and simply take subsets on the fly. Consider this template (make your own working example based on any dataset).

We assume here you have a dataframe called 'dataset' with a factor 'species', for which you want to create separate plots of Y vs. X.
```

pdf("somefilename.pdf", onefile=TRUE)
for(lev in levels(dataset\$species)){
with(subset(dataset, species==lev),
plot(X,Y,

```
```

        main=as.character(lev)))
    }
dev.off()

```

Try this yourself Apply the above template to a dataset of your choice, to make a multi-page pdf with a scatter plot on each page.

\section*{An example line plot}

Another important use of for-loops in plotting is when you want to plot multiple lines in one figure, based on levels of a factor. The default plot in \(\mathbf{R}\) is not smart enough to do this correctly. In the following example, we use the hydro data to see if the pattern in storage is similar between years (producing Fig. 8.1).
```


# First make the hydrosp object from the example above.

# This is a list, where every element is a dataframe for a year of data.

# First we plot the first year, then add subsequent years with a for loop.

# We plot storage versus day of year

# (conveniently extracted with yday from the lubridate package)

# We also first setup a range of colours.

lineCols <- rainbow(5)
with(hydrosp[[1]], plot(yday(Date), storage, type='l', col=lineCols[1],
lwd=2, ylim=c(0,1000),
xlab="Day of year", ylab="Dam storage (kWh)"))
for(i in 2:5)with(hydrosp[[i]], lines(yday(Date), storage, col=lineCols[i], lwd=2))
legend("bottomleft", names(hydrosp), col=lineCols, lty=1, lwd=2, cex=0.6)

```

\subsection*{8.4 Advanced working example}

In this example, we use lists, lapply, sapply as well as loops. We also introduce fitdistr from the MASS package, and use curve to add curves to a histogram.
Let's fit a weibull distribution to the vessel diameter data, separately for the base and apex positions (see Section A.13). We will also visualize the results, and print the coefficients of the fit.

Note that in the following example, you could also simply make two subsets and repeat the analysis for both. But this way of working also applied to datasets where you have hundreds of species.
```


# Read raw data

vessel <- read.csv("vessel.csv")

# Split the dataframe

vesselsp <- split(vessel,vessel\$position)

# Load MASS package

library(MASS)

## 

## Attaching package: 'MASS'

## The following object is masked from 'package:dplyr':

## 

```


Figure 8.1: A line plot for the hydro data.
```


## select

# Fit the weibull (results are stored in a list 'weibfits' containing all outputs).

weibfits <- lapply(vesselsp, function(x)fitdistr(x\$vesseldiam, "weibull"))

# To look at the standard print output for the first one:

weibfits[[1]]

# But if you look at str(weibfits), you will notice the output is a list with many

# components. We will extract 'estimate' which gives the two parameters of the weibull:

weibcoefs <- sapply(weibfits, function(x)x\$estimate)

# And look at the results:

weibcoefs

```

Next, we will plot the two distributions again (as we did in Section 4.5.1), together with a curve of the fitted weibull.

This code produces Fig. 8.2.
```


# First define a plotting function that makes a histogram of 'vesseldiam',

# and adds a curve with a weibull distribution, given the shape and scale parameters:

```


Figure 8.2: Two histograms of the vessel diameter data, with fitted Weibull curves
```

plotHistWeib <- function(dfr, shape, scale){
hist(dfr\$vesseldiam, freq=FALSE, main="", xlab="Vessel diameter")
curve(dweibull(x, shape, scale), add=TRUE)
}

# Setup a plotting region with two plots:

par(mfrow=c (1,2))

# Loop through the vesselsp list, plot histogram and weibull curve for each:

for(i in 1:length(vesselsp)){
plotHistWeib(vesselsp[[i]], shape=weibcoefs[1,i], scale=weibcoefs[2,i])
}

```

Note: we index the weibcoefs object as if it were a dataframe, with the order ROWS, COLUMNS between the square brackets. In fact, it is a matrix but it behaves as a dataframe.

\subsection*{8.5 Functions used in this chapter}

For functions not listed here, please refer to the index at the end of this book.
\begin{tabular}{lll}
Function & \multicolumn{1}{c}{ What it does } & Example use \\
\hline \begin{tabular}{ll}
function & Define a function \\
return & Inside a function definition, return an object \\
message & Print a text message to the screen
\end{tabular} & Section 8.1 \\
list & Define a list & message ("Hello!") \\
unlist & For a list of vectors, turn the list into a single long vector & unlist (list (a=1:3, b=4:6)) \\
do.call & \begin{tabular}{l}
Apply a function given a list of arguments, most often \\
used to successively row-bind dataframes in a list
\end{tabular} & Section 8.2 \\
split & \begin{tabular}{l}
Turn a dataframe into a list, split by levels of a factor \\
variable
\end{tabular} & split (allom, allom\$species) \\
sapply & \begin{tabular}{l}
Apply a function to each element of a list, try to simplify \\
the result (into a vector or matrix)
\end{tabular} & \\
lapply & \begin{tabular}{l}
Apply a function to each element of a list, but do not \\
try to simplify the result - always return a list
\end{tabular} & \\
strsplit & \begin{tabular}{l}
Split a character vector into pieces separated by some \\
specified character
\end{tabular} & strsplit ("a/b/c", "/") \\
\hline
\end{tabular}

\subsection*{8.6 Exercises}

In these exercises, we use the following colour codes:
- Easy: make sure you complete some of these before moving on. These exercises will follow examples in the text very closely.
- Intermediate: a bit harder. You will often have to combine functions to solve the exercise in two steps.
- Hard: difficult exercises! These exercises will require multiple steps, and significant departure from examples in the text.

We suggest you complete these exercises in an \(\mathbf{R}\) markdown file. This will allow you to combine code chunks, graphical output, and written answers in a single, easy-to-read file.

\subsection*{8.6.1 Writing functions}
1. Write a function that adds two numbers, and divides the result by 2 .
2. \(\quad\) You learned in Section 3.5 that you can take subset of a string using the substr function. First, using that function to extract the first 2 characters of a bit of text. Then, write a function called firstTwoChars that extracts the first two characters of any bit of text.
3. Write a function that checks if there are any missing values in a vector (using is.na and any). The function should return TRUE if there are missing values, and FALSE if not.
4. Improve the function so that it tells you which of the values are missing, if any (Hint:use the which function).
5. The function readline can be used to ask for data to be typed in. First, figure out how to use readline by reading the corresponding help file. Then, construct a function called getAge that asks the user to type his/her age. (Hint: check the examples in the readline help page).
6. \(\Delta\) Look at the calculations for a confidence interval of the mean in the example in Section 5.3 (p. 130). Write a function that returns the confidence interval for a vector. The function should have two inputs: the vector, and the desired 'alpha'.
7. \(\Delta\) Recall the functions head and tail. Write a function called middle that shows a few rows around (approx.) the 'middle' of the dataset. Hint: use nrow, print, and possibly floor.

\subsection*{8.6.2 Working with lists}

First read the following list:
```

veclist <- list(x=1:5, y=2:6, z=3:7)

```
1. Using sapply, check that all elements of the list are vectors of the same length. Also calculate the sum of each element.
2. Add an element to the list called 'norms' that is a vector of 10 numbers drawn from the standard normal distribution (recall Section 5, p. 126).
3. Using the pupae data (Section A.6, p. 244), use a \(t\)-test to find if PupalWeight varies with temperature treatment, separate for the two \(\mathrm{CO}_{2}\) treatments (so, do two \(t\)-tests). Use split and lapply.
4. \(\quad\) / Recall the exercise in Section 4.9 .4 (p. 125). First read the data. Then, split the data by species, to produce a list called coweeta_sp. Keep only those species that have at least 10 observations. (Hint: first count the number of observations per species, save that as a vector, find which are at least 10, and use that to subscript the list.) If you don't know how to do this last step, skip it and continue to the next item.
5. Using the split Coweeta data, perform a linear regression of log10 (biomass) on \(\log 10\) (height), separately by species. (Hint: recall section 8.2.2, p. 218).
6. Run this code to get two vectors:
x <- rnorm(100)
y <- x + rnorm(100)
Run a linear regression \(y=f(x)\), save the resulting object. Look at the structure of this object, and note the names of the elements. Extract the residuals and make a histogram.
7. \(\Delta\) From question 6, write a function that takes an 1 m object as an argument, and plots a histogram of the residuals.

\subsection*{8.6.3 Using functions to make many plots}
1. Read the cereal data. Create a subset of data where the Manufacturer has at least two observations (use table to find out which you want to keep first). Don't forget to drop the empty factor level you may have created!
2. Make a single PDF with six plots, with a scatter plot between potassium and fiber for each of the six (or seven?) Manufacturers. (Hint: ook at the template for producing a PDF with multiple pages at the bottom of Section 8.3, p. 221).
3. \(\Delta\) Recall that we can use points to add points or lines to a current plot. See Section 4.4 .7 (p. 104) for an example using the Dutch election data. Read the data (and convert the Date variable!).
4. \(\Delta\) Write a function that adds lines for each of the parties in the election data to a plot. First set up an empty plot using,
with(election, plot(Date, VVD, type='n', ylim=c \((0,40)\))
Then carefully inspect the example in Section 4.4 .7 (p. 104) to see how you can write a function that adds a line for one party (e.g. 'SP') to that plot.
5. \(\Delta\) Loop through all columns of the election data, add a line for each column to the plot.

\subsection*{8.6.4 Monthly weather plots}
1. For the HFE weather dataset (Section A.10, p. 247), write a function that makes a scatter plot between PAR and VPD.
2. Then, split the dataset by month (recall Section 8.2.1, p. 217), and make twelve such scatter plots. Save the result in a single PDF, or on one page with 12 small figures.

\subsection*{8.6.5 The Central limit theorem}

The 'central limit theorem' (CLT) forms the backbone of inferential statistics. This theorem states (informally) that if you draw samples (of \(n\) units) from a population, the mean of these samples follows a normal distribution. This is true regardless of the underlying distribution you sample from.

In this exercise, you will apply a simple simulation study to test the CLT, and to make histograms and quantile-quantile plots.
1. Draw 200 samples of size 10 from a uniform distribution. Use the runif function to sample from the uniform distribution, and the replicate function to repeat this many times.
2. Compute the sample mean for each of the 200 samples in 1 . Use apply or colMeans to calculate column-wise means of a matrix (note: replicate will return a matrix, if used correctly).
3. Draw a histogram of the 200 sample means, using hist. Also draw a normal quantile-quantile plot, using qqnorm.
4. On the histogram, add a normal curve using the dnorm function. Note: to do this, plot the histogram with the argument freq=FALSE, so that the histogram draws the probability density, not the frequency.
5. \(\Delta\) Write a function that does all of the above, and call it PlotCLT.

\section*{Chapter 9}

\section*{Project management and workflow}

\subsection*{9.1 Tips on organizing your code}

In this chapter, we present a few tips on how to improve your workflow and organization of scripts, functions, raw data, and outputs (figures, processed data, etc.). The structure that we present below is just an example, and will depend on the particular project, and your personal taste. We encourage you to experiment with different workflows and organization of your script(s) and outputs, to declutter your working directory and to be able to keep track of what you have accomplished in your analysis sofar.
Although much of this is subject to personal preference, we believe that if you follow these rules, management of your code will be much easier and more transparent:
1. Use 'projects' in Rstudio to manage your files and workspace
2. Keep raw (original) data in a separate folder, and never modify raw data
3. Outputs (figures, processed datasets) are disposable, your scripts can always re-produce the output
4. Keep functions separate from other code
5. Write functions as much as possible

Further reading Further reading is on this excellent blogpost, from which we borrowed some ideas: http://nicercode.github.io/blog/2013-04-05-projects/

If you follow (something like) the structure we show here, you have the added benefit that your directory is fully portable. That is, you can zip it, email it to someone, they can unzip it and run the entire analysis.

The most important tip is to use projects in Rstudio. Projects are an efficient method to keep your files organized, and to keep all your different projects separated. There is a natural tendency for analyses to grow over time, to the point where they become too large to manage properly. The way we usually deal with this is to try to split projects into smaller ones, even if there is some overlap between them.

\subsection*{9.2 Set up a project in Rstudio}

In Rstudio, click on the menu item File/New Project.... If you already have a folder for the project, take the 2nd option (Existing directory), otherwise create a folder as well by choosing the 1st option (New project). We will not discuss "version control" in this chapter (the third option).
Browse for the directory you want to create a project in, and click Choose. This creates a file with extension . Rproj. Whenever you open this project, Rstudio will set the working directory to the location of the project file. If you use projects, you no longer need to set the working directory manually as we showed in Section 1.8.

Rstudio has now switched to your new project. Notice in the top-right corner there is a button that shows the current project. For the example project 'facesoil', it looks like this:

By clicking on that button you can easily switch over to other projects. The working directory is automatically set to the right place, and all files you had open last time are remembered as well. As an additional bonus, the workspace is also cleared. This ensures that if you switch projects, you do not inadvertently load objects from another project.

\subsection*{9.3 Directory structure}

For the 'facesoil' project, we came up with the following directory structure. Each item is described further below.
\begin{tabular}{|c|c|c|c|}
\hline Name & Date modified & Type & Size \\
\hline 1. archive & 27/06/2013 1:52 PM & File folder & \\
\hline (1) html & 27/06/2013 1:52 PM & File folder & \\
\hline 13. otherscripts & 27/06/2013 1:52 PM & File folder & \\
\hline 1. output & 27/06/2013 1:52 PM & File folder & \\
\hline]. rawdata & 27/06/2013 1:52 PM & File folder & \\
\hline 1. Rfunctions & 27/06/2013 3:17 PM & File folder & \\
\hline (1) facesoil.Rproj & 27/06/2013 12:06 ... & R Project & 1 KB \\
\hline (0) facesoil_analysis.R & 27/06/2013 12:37 ... & R File & 1 KB \\
\hline (0) facesoil_figures.R & 27/06/2013 12:35 ... & R File & 1 KB \\
\hline (0) facesoil_load.R & 27/06/2013 12:37 ... & R File & 1 KB \\
\hline (0) facesoil_readdata.R & 27/06/2013 12:13 ... & R File & 2 KB \\
\hline
\end{tabular}
rawdata

Most importantly, keep your raw data separate from everything else. Here we have placed our raw CSV files in the rawdata directory.
In some projects it makes sense to further keep raw data files separate from each other, for example you might have subfolders in the rawdata folder that contain different types of datasets (e.g. 'rawdata/leafdata', 'rawdata/isotopes'). Again, the actual solution will depend on your situation, but it is at least very good practice to store your raw data files in a separate folder.

\section*{Rfunctions}

If you do not frequently write functions already, you should force yourself to do so. Particularly for tasks that you do more than once, functions can greatly improve the clarity of your scripts, helps you avoid mistakes, and makes it easier to reuse code in another project.

It is good practice to keep functions in a separate folder, for example Rfunctions, with each function in a separate file (with the extension .R). It may look like this,
\begin{tabular}{l|l|l|l|}
Name & Date modified & Type & Size \\
\hline O awesomefunction.R & \(27 / 06 / 20133: 16 \mathrm{PM}\) & R File & 0 KB \\
\hline O rmDup.R & \(27 / 06 / 201312: 13 \ldots\) & R File & 1 KB
\end{tabular}

We will use source() to load these functions, see further below.
output
It is a good idea to send all output from your \(\mathbf{R}\) scripts to a separate folder. This way, it is very clear what the outputs of the analysis are. It may also be useful to have subfolders specifying what type of output it is. Here we decided to split it into figures, processeddata, and text :
Name
figures
processeddata
text
\begin{tabular}{l|l|l}
Date modified & Type & Size \\
27/06/2013 1:52 PM & File folder & \\
\hline \(27 / 06 / 20131: 52 \mathrm{PM}\) & File folder & \\
\(27 / 06 / 20131: 52 \mathrm{PM}\) & File folder &
\end{tabular}

\subsection*{9.4 The R scripts}

A few example scripts are described in the following sections. Note that these are just examples, the actual setup will depend on your situation, and your personal preferences. The main point to make here is that it is tremendously useful to separate your code into a number of separate scripts. This makes it easier to maintain your code, and for an outsider to follow the logic of your workflow.

\section*{facesoil_analysis.R}

This is our 'master' script of the project. It calls (i.e., executes) a couple of scripts using source. First, it 'sources' the facesoil_load.R script, which loads packages and functions, and reads raw data. Next, we do some analyses (here is a simple example where we calculate daily averages), and call a script that makes the figures (facesoil_figures.R).
Note how we direct all output to the 'output' folder, by specifying the relative path, that is, the path relative to the current working directory.
```


# Calls the load script.

source("facesoil_load.R")

# Export processed data

write.csv(allTheta, "output/processeddata/facesoil_allTheta.csv",
row.names=FALSE)

## Aggregate by day

# Make daily data

allTheta$Date <- as.Date(allTheta$DateTime)
allTheta_agg <- summaryBy(. ~ Date + Ringnr, data=allTheta,
FUN=mean, keep.names=TRUE)

# Export daily data

write.csv(allTheta_agg, "output/processeddata/facesoil_alltheta_daily.csv",
row.names=FALSE)

## make figures

source("figures.R")

```

\section*{facesoil_figures.R}

In this example we make the figures in a separate script. If your project is quite small, perhaps this makes little sense. When projects grow in size, though, I have found that collecting the code that makes the figures in a separate script really helps to avoid clutter.

Also, you could have a number of different 'figure' scripts, one for each 'sub-analysis' of your project. These can then be sourced in the master script (here facesoil_analysis.R), for example, to maintain a transparent workflow.
Here is an example script that makes figures only. Note the use of dev.copy2pdf, which will produce a PDF and place it in the output/figures directory.
```


# Make a plot of soil water content over time

windows()
with(allTheta, plot(DateTime, R30.mean, pch=19, cex=0.2,
col=Ringnr))
dev.copy2pdf(file="./output/figures/facesoil_overtime.pdf")

# More figures go here!

```

\section*{facesoil_load}

This script contains all the bits of code that are
1. Cleaning the workspace
2. Loading packages
3. Loading homemade functions
4. Reading and pre-processing the raw data

Remember that it is important to start with a clean workspace (see Section 1.9), as it guarantees that all your work is reproducible (and not dependent on objects that you created ages ago).

It is useful to load all packages in one location in your, which makes it easy to fix problems should they arise (i.e., some packages are not installed, or not available).
```


# Clean workspace

rm(list=ls())

# Load packages

library(doBy)
library(lubridate)

# Source functions (this loads functions but does no actual work)

source("Rfunctions/rmDup.R")

# Make the processed data (this runs a script)

source("facesoil_readdata.R")

```

\section*{facesoil_readdata.R}

This script produces a dataframe based on the raw CSV files in the 'rawdata' folder. The example below just reads a dataset and changes the DateTime variable to a POSIXct class. In this script, I normally also do all the tedious things like deleting missing data, converting dates and times, merging, adding new variables, and so on. The advantage of placing all of this in a separate script is that you keep the boring bits separate from the code that generates results, such as figures, tables, and analyses.
```


# Read raw data from 'rawdata' subfolder

allTheta <- read.csv("rawdata/FACE_SOIL_theta_2013.csv")

# Convert DateTime

allTheta$DateTime <- ymd_hms(as.character(allTheta$DateTime))

# Add Date

allTheta$Date <- as.Date(allTheta$DateTime)

# Etc.

```

\subsection*{9.5 Archiving the output}

In the example workflow we have set up in the previous sections, all items in the output folder will be automatically overwritten every time we run the master script facesoil_analysis.R. One simple
way to back up your previous results is to create a zipfile of the entire output directory, place it in the archive folder, and rename it so it has the date as part of the filename.
After a while, that directory may look like this:
\begin{tabular}{|l|l|l|l|}
\multicolumn{1}{l}{ Name } & Date modified & Type & Size \\
\hline B output_2013-5-22.zip & \(27 / 06 / 201312: 38 \ldots\) & Compressed (zipp... & 56 KB \\
\hline B output_2013-6-14.zip & \(27 / 06 / 201312: 38 \ldots\) & Compressed (zipp... & 56 KB \\
\hline output_2013-6-27.zip & \(27 / 06 / 201312: 38 \ldots\) & Compressed (zipp... & 56 KB \\
\hline
\end{tabular}

If your processData folder is very large, this may not be the optimal solution. Perhaps the processedData can be in a separate output folder, for example.

\section*{Adding a Date stamp to output files}

Another option is to use a slightly different output filename every time, most usefully with the current Date as part of the filename. The following example shows how you can achieve this with the today from the lubridate package, and paste0 (which is the same as paste, with the argument sep="").
```


# For the following to work, load lubridate

# Recall that in your workflow, it is best to load all packages in one place.

library(lubridate)

# Make a filename with the current Date:

fn <- paste0("output/figures/FACE_soilfigure1_",today(),".pdf")
fn

## [1] "output/figures/FACE_soilfigure1_2019-08-29.pdf"

# Also add the current time, make sure to reformat as ':' is not allowed!

fn <- paste0("output/figures/FACE_soilfigure1_",format(now(),"%Y-%m-%d_%H-%M"),".pdf")
fn

## [1] "output/figures/FACE_soilfigure1_2019-08-29_16-01.pdf"

```

With the above filename, we can now make a PDF, like so:
```

windows(7,7)

# .... make plot here ....

dev.copy2pdf(file=fn)

```

\section*{Chapter 10}

\section*{Hints}

\subsection*{10.1 Identifying and managing different types of objects}

\subsection*{10.1.1 Vectors}

Dimensions: \(n\) elements in one dimension, all of one mode
- length (vector) gives the number of elements of vector

Generating:
- use c() with data
- use vector (mode, length) without data, where mode = 'numeric', 'integer', 'character', or 'logical' Indexing:
- vector [i] takes the \(i^{\text {th }}\) element of vector
- vector ['name'] takes the element of vector that is named 'name'
```


# Example:

num1 <- c(1,3,5)
str(num1)

## num [1:3] 1 3 5

length(num1)

## [1] 3

num1

## [1] 1 3 5

num1 [2]

## [1] 3

names(num1) <- c('a', 'b', 'c')
num1

## a b c

## 1 3 5

```
```

num1['b']

## b

## 3

```

\subsection*{10.1.2 Matrices}

Dimensions: \(n\) elements in two dimensions \((i, j)\), all of one mode
- length(matrix) gives the number of elements in matrix
- dim (matrix) gives the number of rows and columns in matrix
- nrow (matrix) and ncol (matrix) give the number of rows and columns, respectively, in matrix

Generating:
- use matrix(c(), nrow, ncol) with data
- use matrix(NA, nrow, ncol) without data

Indexing:
- matrix[i, j] takes the element in the \(i^{\text {th }}\) row and \(j^{\text {th }}\) column of vector
- matrix ['rowname', 'colname'] takes the element of vector with the row named 'rowname' and the column named 'colname'
```


# Example:

mat1 <- matrix(c(1,3,5,7,9,11), nrow=3, ncol=2, byrow=T)
str(mat1)

## num [1:3, 1:2] 1 5 9 3 7 11

length(mat1)

## [1] 6

dim(mat1)

## [1] 3 2

ncol(mat1); nrow(mat1)

## [1] 2

## [1] 3

mat1

## [,1] [,2]

## [1,] 1 3

## [2,] 5 7

## [3,] 9 11

mat1[2,2]

## [1] 7

rownames(mat1) <- c('a', 'b', 'c')
colnames(mat1) <- c('A', 'B')
mat1

```
```


## A B

## a 1 3

## b 5 7

## c 9 11

mat1['b', 'B']

## [1] 7

```

\subsection*{10.1.3 Lists}

Dimensions: variable - each element is an object, possibly of any type
- length (list [[i]]) gives the number of elements in the \(i^{\text {th }}\) element of list
- length (list) gives the number of elements at the highest level of list respectively

Generating:
- use list (x, y, etc.) with data, where each element could be any type of object
- use vector (mode = 'list', length) without data, then add data to each element via indexing Indexing:
- list [[i]] takes the object in the \(i^{\text {th }}\) element of list
- list \([[c(i, j)]]\) returns the \(j^{\text {th }}\) element of the \(i^{\text {th }}\) element list
- list [['name']] takes the object within list that is named 'name'
- list [i] returns a list containing the \(i^{\text {th }}\) element of list
- list ['name'] or list\$name returns a list containing the element of list that is named 'name'
```


# Example:

list1 <- list(1:10, c('a', 'to', 'z'), matrix(1:4, nrow=2, ncol=2))
str(list1)

## List of 3

## \$ : int [1:10] 1 2 3 4 5 6 7 8 9 10

## \$ : chr [1:3] "a" "to" "z"

## \$ : int [1:2, 1:2] 1 2 3 4

list1

## [[1]]

## [1] [1 1

## 

## [[2]]

## [1] "a" "to" "z"

## 

## [[3]]

## [,1] [,2]

## [1,] 1 3

## [2,] 2 4

list1[[2]]

## [1] "a" "to" "z"

list1[[2]][2]

```
```


## [1] "to"

list1[[c(2,2)]]

## [1] "to"

list1[2]

## [[1]]

## [1] "a" "to" "z"

list1[c(2,1)]

## [[1]]

## [1] "a" "to" "z"

## 

## [[2]]

## [1] [1

names(list1) <- c('num', 'char', 'mat')
list1[['mat']]

## [,1] [,2]

## [1,] 1 3

## [2,] 2 4

list1\$mat

## [,1] [,2]

## [1,] 1 3

## [2,] 2 4

```

\subsection*{10.1.4 Dataframes}

Dimensions: elements in vectors, possibly of different modes, but each with \(n\) elements (a special type of list)
- dim(df)
- length (dataframe) gives the number of columns in dataframe
- dim(dataframe) gives the number of rows and columns in matrix
- nrow (dataframe) and ncol (dataframe) give the number of rows and columns,

Generating:
- data.frame (vector1, vector2) creates a dataframe with two columns from two vectors
- data.frame (col1=vector1, col2=vector2) creates a dataframe with two columns named 'col1' and 'col2' from two vectors

Indexing:
- dataframe \([i, j]\) takes the element in the \(i^{t} h\) row and \(j^{t} h\) column of dataframe
- dataframe [['colname']] or dataframe\$colname takes the column of dataframe that is named 'colname'
df <- data.frame(vec1=11:20, vec2=rnorm(n=10))
str (df)
```


## 'data.frame': 10 obs. of 2 variables:

## \$ vec1: int 11 12 13 14 15 16 17 18 19 20

## \$ vec2: num -1.142 0.593 -0.75 1.707 0.563 ...

dim(df)

## [1] 10 2

length(df)

## [1] 2

df

## vec1 vec2

## 1 11 -1.1415432

## 2 12 0.5926600

## 3 13-0.7500866

## 4 14 1.7069878

## 5 15 0.5625549

## 6 16 0.2677543

## 7 17 1.0087672

## 8 18 -1.6415777

## 9 19 0.9512273

## 10 20 -0.1265844

df[2, ]

## vec1 vec2

## 2 12 0.59266

df[, 2]

## [1] -1.1415432 0.5926600 -0.7500866 1.7069878 0.5625549 0.2677543

## [7] 1.0087672 -1.6415777 0.9512273 -0.1265844

df[2,2]

## [1] 0.59266

df[['vec2']]

## [1] -1.1415432 0.5926600 -0.7500866 1.7069878 0.5625549 0.2677543

## [7] 1.0087672 -1.6415777 0.9512273 -0.1265844

df\$vec2

## [1] -1.1415432 0.5926600 -0.7500866 1.7069878 0.5625549 0.2677543

## [7] 1.0087672 -1.6415777 0.9512273 -0.1265844

names(df) <- c('var1', 'var2')
str(df)

## 'data.frame': 10 obs. of 2 variables:

## \$ var1: int 11 12 13 14 15 16 17 18 19 20

## \$ var2: num -1.142 0.593 -0.75 1.707 0.563 ...

```

\section*{Chapter 11}

\section*{Getting Help}

\subsection*{11.1 Web}

That's right, Google should be your number one choice. Try typing a question in full, for example, "How to read tab-delimited data in R".
www.google.com
Search engine for R-related topics (including packages, blogs, email lists, etc.):
WWW.rseek. org
Excellent resource for graphical parameters, like par() (and more resources on \(\mathbf{R}\)):
http://www.statmethods.net/advgraphs/parameters.html
Archive (and search) of the R-help mailing list can be found on Nabble:
http://r.789695.n4.nabble.com/
Search engine for the R-help mailing list:
http://finzi.psych.upenn.edu/search.html

\subsection*{11.2 Free online books}

You can find a large number of manuals on the CRAN website. There, find the link 'Contributed' on the left:
www.cran.r-project.org
If you are interested in the inner workings of \(\mathbf{R}\), the ' R inferno' is not to be missed:
http://www.burns-stat.com/pages/Tutor/R_inferno.pdf

\subsection*{11.3 Blogs}

A compendium of blogs about \(\mathbf{R}\) can be found here. These blogs include many posts on frequently asked questions, as well as advanced topics:
http://www.r-bloggers.com/

Examples of various simple or complicated plots that have been produced using \(\mathbf{R}\), with code provided can be found here:
http://rgraphgallery.blogspot.com.au/

\subsection*{11.4 Finding packages}

With >10000 packages available on CRAN alone (http://cran.r-project.org/), it can be difficult to find a package to perform a specific analysis. Often the easiest way to find a package is to use Google (for example, 'r package circular statistics'). CRAN has also categorized many packages in their 'Task Views': http://cran.r-project.org/web/views/
For example, the 'Spatial' page lists over 130 packages to do with various aspects of spatial analysis and visualization.

\subsection*{11.5 Offline paper books}

An exhaustive list of printed books can be found here:
http://www.r-project.org/doc/bib/R-books.html
Springer publishes many books about R, incluing a special series called "Use R!" If your library has a subscription, many of these books can be read online. For example, the classic Introductory Statistics with \(R\) by Peter Dalgaard:
http://link.springer.com/book/10.1007/978-0-387-79054-1/page/1

\section*{Appendix A}

\section*{Description of datasets}

\section*{A. 1 Tree allometry}

File: 'Allometry.csv'
This dataset contains measurements of tree dimensions and biomass. Data kindly provided by John Marshall, University of Idaho.

\section*{Variables:}
- species - The tree species (PSME = Douglas fir, PIMO = Western white pine, PIPO = Ponderosa pine).
- diameter - Tree diameter at 1.3 m above ground (cm).
- height - Tree height (\(m\)).
- leafarea - Total leaf area (\(m^{2}\)).
- branchmass - Total (oven-dry) mass of branches (kg).

\section*{A. 2 Coweeta tree data}

File: 'coweeta.csv'
Tree measurements in the Coweeta LTER (http: // coweeta.uga. edu/). Data are from Martin et al. (1998; Can J For Res 28:1648-1659).

\section*{Variables:}
- species One of 10 tree species
- site Site abbreviation
- elev Elevation (\(m\) asl)
- age Tree age (yr)
- DBH Diameter at breast height (cm)
- height Tree height (\(m\))
- folmass Foliage mass (kg)
- SLA Specific leaf area \(\left(\mathrm{cmg}^{-} 1\right)\)
- biomass Total tree mass (kg)

\section*{A. 3 Hydro dam}

File: 'hydro.csv'
This dataset describes the storage of the hydrodam on the Derwent river in Tasmania (Lake King William \& Lake St. Clair), in equivalent of energy stored. Data were downloaded from http://www. hydro.com.au/water/energy-data.

\section*{Variables:}
- Date - The date of the bi-weekly reading
- storage - Total water stored, in energy equivalent (GWh).

\section*{A. 4 Rain}

File: 'Rain.csv'
This dataset contains ten years (1995-2006) of daily rainfall amounts as measured at the Richmond RAAF base. Source : BOM (http://www.bom.gov.au/climate/data/).

\section*{Variables:}
- Year
- DOY - Day of year (1-366)
- Rain - Daily rainfall (mm)

\section*{A. 5 Weight loss}

File: 'Weightloss.csv'
This dataset contains measurements of a Jeremy Zawodny over a period of about 3 months while he was trying to lose weight (data obtained from http://jeremy .zawodny.com/blog/archives/006851. \(h t m l\)). This is an example of an irregular timeseries dataset (intervals between measurements vary).

\section*{Variables:}
- Date - The Date (format, dd/mm/yy)
- Weight - The person's weight (lbs)

\section*{A. 6 Pupae}

File: 'pupae.csv'
This dataset is from an experiment where larvae were left to feed on Eucalyptus leaves, in a glasshouse that was controlled at two different levels of temperature and \(\mathrm{CO}_{2}\) concentration. After the larvae
pupated (that is, turned into pupae), the body weight was measured, as well as the cumulative 'frass' (larvae excrement) over the entire time it took to pupate.

Data courtesy of Tara Murray, and simplified for the purpose of this book.

\section*{Variables:}
- T_treatment - Temperature treatments ('ambient' and 'elevated')
- C02_treatment - \(\mathrm{CO}_{2}\) treatment (280 or 400 ppm).
- Gender - The gender of the pupae : o (male), 1 (female)
- PupalWeight - Weight of the pupae (\(g\))
- Frass - Frass produced (g)

\section*{A. 7 Cereals}

File: ‘Cereals.csv’
This dataset summarizes 77 different brands of breakfast cereals, including calories, proteins, fats, and so on, and gives a 'rating' that indicates the overall nutritional value of the cereal.
This dataset was downloaded from Statlib at CMU, and is frequently used as an example dataset.

\section*{Variables:}
- Cereal name - Name of the cereal (text)
- Manufacturer - One of: "A","G","K","N","P","Q","R" (A = American Home Food Products; G = General Mills; K = Kelloggs; N = Nabisco; P = Post; Q = Quaker Oats; R = Ralston Purina)
- Cold or Hot - Either "C" (cold) or "H" (Hot).
- calories - number
- protein-g
- fat-g
- sodium-g
- fiber-g
- carbo-g
- sugars - g
- potass-g
- vitamins-0,25 or 100
- rating - Nutritional rating (function of the above 8 variables).

NOTE: also included are the files 'cereal1.csv', 'cereal2.csv' and 'cereal3.csv', small subsets of the cereal data used in Section 6.3.1.

\section*{A. 8 Flux tower data}

File: 'Fluxtower.csv'

This dataset contains measurements of \(\mathrm{CO}_{2}\) and \(\mathrm{H}_{2} \mathrm{O}\) fluxes (and related variables) over a pine forest in Quintos de Mora, Spain. The site is a mixture of Pinus pinaster and Pinus pinea, and was planted in the 196o's.

Data courtesy of Victor Resco de Dios, and simplified for the purpose of this book.

\section*{Variables:}
- TIMESTAMP - Character vector with date and time
- FCO2 - Canopy CO2 flux (\(\mu \mathrm{mol} \mathrm{m}{ }^{-2} \mathrm{~s}^{-1}\))
- FH2O - Canopy H2O flux (mmol m \({ }^{-2} \mathrm{~s}^{-1}\))
- ustar - Roughness length (m s \({ }^{-1}\))
- Tair - Air temperature (degrees C)
- RH - Relative humidity (\%)
- Tsoil - Soil temperature (degrees C)
- Rain - Rainfall (mm half hour \({ }^{-1}\))

\section*{A. 9 Pulse rates before and after exercise}

File: 'ms212.txt'
This data is in a TAB separated file; to read it in use read.table ("ms212.txt", header=TRUE).
A dataset on pulse rates before and after exercise. Taken from the OzDASL library (Smyth, GK (2011). Australasian Data and Story Library (OzDASL). http://www.statsci.org/data.)

More information at http://www.statsci.org/data/oz/ms212.html.

\section*{Variables:}
- Height - Height (cm)
- Weight - Weight (kg)
- Age - Age (years)
- Gender - Sex (1 = male, \(2=\) female \()\)
- Smokes - Regular smoker? (1 = yes, 2 = no)
- Alcohol - Regular drinker? (1 = yes, \(2=n o\))
- Exercise - Frequency of exercise (1 = high, 2 = moderate, 3 = low)
- Ran - Whether the student ran or sat between the first and second pulse measurements (1 = ran, 2 = sat)
- Pulse1 - First pulse measurement (rate per minute)
- Pulse2 - Second pulse measurement (rate per minute)
- Year - Year of class (93-98)

\section*{A. 10 Weather data at the HFE}

File: 'HFEmet2008.csv'
Data for the weather station at the Hawkesbury Forest Experiment for the year 2008.
Data courtesy of Craig Barton.

\section*{Variables:}
- DateTime - Date Time (half-hourly steps)
- Tair - Air temperature (degrees C)
- AirPress - Air pressure (kPa)
- RH - Relative humidity (\%)
- vPD - Vapour pressure deficit (kPa)
- PAR - Photosynthetically active radiation (\(\mu \mathrm{mol} \mathrm{m}^{-2} \mathrm{~s}^{-1}\))
- Rain - Precipitation (mm)
- wind - Wind speed (\(\mathrm{m} \mathrm{s}^{-1}\))
- winddirection - Wind direction (degrees)

\section*{A. 11 Age and memory}

File: 'eysenck.txt' This data is in a TAB separated file, so to read it in use read.table("eysenck.txt", header=TRUE).

A dataset on the number of words remembered from list, for various learning techniques, and in two age groups. Taken from the OzDASL library (Smyth, GK (2011). Australasian Data and Story Library (OzDASL). http://www.statsci.org/data.)

More information at http://www.statsci.org/data/general/eysenck.html.

\section*{Variables:}
- Age - Younger or Older
- Process - The level of processing: Counting, Rhyming, Adjective, Imagery or Intentional
- Words - Number of words recalled

\section*{A. 12 Passengers on the Titanic}

File: 'titanic.txt'
This data is in a TAB separated file, so to read it in use read.table("titanic.txt", header=TRUE).
Survival status of passengers on the Titanic, together with their names, age, sex and passenger class. Taken from the OzDASL library (Smyth, GK (2011). Australasian Data and Story Library (OzDASL). http: //www.statsci.org/data.)
More information at http://www.statsci.org/data/general/titanic.html.

\section*{Variables:}
- Name Recorded name of passenger
- PClass Passenger class: 1st, 2nd or 3rd
- Age Age in years (many missing)
- Sex male or female
- Survived 1 = Yes, \(0=\) No

\section*{A. 13 Xylem vessel diameters}

File: 'vessel.csv'
Measurements of diameters of xylem (wood) vessels on a single Eucalyptus saligna tree grown at the Hawkesbury Forest Experiment.

Data courtesy of Sebastian Pfautsch.

\section*{Variables:}
- position - Either 'base' or 'apex' : the tree was sampled at stem base and near the top of the tree.
- imagenr - At the stem base, six images were analyzed (and all vessels measured in that image). At apex, three images.
- vesselnr - Sequential number
- vesseldiam - Diameter of individual vessels (\(\mu \mathrm{m}\)).

\section*{A. 14 Eucalyptus leaf endophytes}

File: ‘endophytes_env.csv' and 'endophytes.csv'
Community fingerprints from fungi colonising living leaves and litter from nine Eucalyptus spp. in the HFE common garden and surrounding area. 'endophytes.csv' contains a 'species-sample' matrix, with 98 samples in rows and 874 operational taxonomic units (OTUs) in columns.

The variables below refer to the data in 'endophytes_env.csv'. The rows are matched across the two tables.

\section*{Variables:}
- species - Tree species
- type - Whether leaves came from canopy (fresh) or ground (litter)
- percentC - Leaf carbon content, per gram dry mass
- percentN - Leaf nitrogen content, per gram dry mass
- CNratio - Ratio of C to N in leaves

\section*{A. 15 I x F at the HFE - plot averages}

File: 'HFEIFplotmeans.csv'

Tree inventory data from the irrigation by fertilization (I x F) experiment in the Hawkesbury Forest Experiment (HFE). This dataset includes the plot means, see I x F tree data for the tree-level observations.

Data courtesy of Craig Barton and Burhan Amiji.

\section*{Variables:}
- plotnr - A total of sixteen plots (four treatments).
- Date - The date of measurement.
- totalvolume - Total estimated woody volume (\(\mathrm{m}^{3} \mathrm{ha}^{-1}\)).
- meandiameter - Mean diameter for the sample trees (cm).
- meanheight - Mean height for the sample trees \((m)\).
- treat - One of four treatments (I - irrigated, F - dry fertilized, IL - Liquid fertilizer plus irrigation, C - control).

\section*{A. 16 I x F at the HFE - tree observations}

File: 'HFEIFbytree.csv’
Tree inventory data from the irrigation by fertilization (\(\mathrm{I} \times \mathrm{F}\)) experiment in the Hawkesbury Forest Experiment (HFE). This dataset includes the tree-level observations.

Data courtesy of Craig Barton and Burhan Amiji.

\section*{Variables:}
- ID A unique identifier for each tree.
- plotnr - A total of sixteen plots (four treatments).
- treat - One of four treatments (I - irrigated, F - dry fertilized, IL - Liquid fertilizer plus irrigation, C - control)
- Date - The date of measurement (YYYY-MM-DD)
- height - Mean height for the sample trees (\(m\)).
- diameter - Mean diameter for the sample trees (cm).

\section*{A. 17 Dutch election polls}

File: 'dutchelection.csv'
Polls for the 12 leading political parties in the Netherlands, leading up to the general election on 12 Sept. 2012. Data are in 'wide' format, with a column for each party. Values are in percentages.

Data taken from http://en.wikipedia.org/wiki/Dutch_general_election,_2012, based on polls by Ipsos NL.

\section*{A. 18 Tibetan Plateau plant community data}

File: 'tibplat.csv'
Plant community data collected from 0.5 m by 0.5 m plots in an alpine grassland in the Tibetan Plateau. The experiment included two factors: fertilisation (none, 30 grams nitrogen per square metre) and grazing (enclosed to prevent grazing, not enclosed). This dataset is a subset of the whole dataset, including only the eight most abundant species of the 48 species measured withing the plots. The full dataset was analysed in Yang et al., 2012, Ecology 93:2321 (doi:10.1890/11-2212.1).

\section*{Variables:}
- fertilization-1:yes, o:no
- enclosure - 1:yes, o:no
- columns 3:50-aboveground biomass per plot; column heading indicates species identity

\section*{A. 19 Genetically modified soybean litter decomposition}

File: 'masslost.csv'
Soybean litter decomposition as a function of time (date), type of litter (variety), herbicides applied (herbicide), and where in the soil profile it is placed (profile). masslost refers to the proportion of the litter that was lost from the bag (decomposed) relative to the start of the experiment. Herbicide treatments were applied at the level of whole plots, with both treatments represented within each of four blocks. Both levels of variety and profile were each represented within each plot, with six replicates of each treatment added to each plot.

\section*{Variables:}
- plot - A total of eight plots.
- block - A total of four blocks.
- variety - Soybean variety is genetically modified ('gm') or not ('nongm'); manipulated at the subplot level.
- herbicide - Herbicide applied is glyphosate ('gly') or conventional program ('conv'); manipulated at plot level.
- profile - Whether litter was 'buried' in the soil or placed at the soil 'surface'; manipulated at the subplot level.
- date - Date at which litter bags were recovered.
- sample - Factor representing timing of sampling ('incrop1', 'incropz', 'postharvest').
- masslost - The proportion of the initial mass that was lost from each litter bag during field incubation. Some values are lower than zero due to insufficient washing of dirt and biota from litter prior to weighing.

\section*{A. 20 EucFACE ground cover data}

File: ‘eucfaceGC.csv'
This file contains estimates of plant and litter cover within the rings of the EucFACE experiment, evaluating forest ecosystem responses to elevated \(\mathrm{CO}_{2}\), on two dates. Within each ring are four plots and within each plot are four 1 m by 1 m subplots. Values represent counts along a grid of 16 points within each subplot.

\section*{Variables:}
- Date - Date at which measurements took place.
- Ring - The identity of the EucFACE Ring, the level at which the experimental treatment is applied.
- Plot - A total of four plots, nested within each level of Ring.
- Sub - A total of four subplots, nested within each level of Plot.
- Forbes - Number of points where dicot plants are observed.
- Grass - Number of points where grass is observed.
- Litter - Number of points where leaf litter is observed.
- Trt - The experimental treatment: ctrl for ambient levels of atmospheric carbon dioxide, elev for ambient plus 150ppm.

\section*{A. 21 Tree canopy gradients in the Priest River Experimental Forest (PREF)}

File: 'prefdata.csv'
The dataset contains measurements of leaf mass per area (LMA), and distance from the top of the tree (dfromtop) on 35 trees of two species.
Data courtesy of John Marshall (Marshall, J.D., Monserud, R.A. 2003. Foliage height influences specific leaf area of three conifer species. Can J For Res 33:164-170), and simplified for the purpose of this book.

\section*{Variables:}
- ID - ID of the individual tree
- species - Pinus ponderosa or Pinus monticola
- dfromtop - Distance from top of tree (where leaf sample was taken) (m)
- totheight - Total height of the tree (m)
- height - Height from the ground (where sample was taken) (m)
- LMA - Leaf mass per area (\(\mathrm{g} \mathrm{m}^{-2}\))
- narea - Nitrogen per area (\(\mathrm{gN} \mathrm{m}^{-2}\))

\section*{A. 22 Seed germination}

File: ‘germination_fire.csv' and 'germination_water.csv'

Two datasets on the germination success of seeds of four Melaleuca species, when subjected to temperature, fire cue, and dehydration treatments. Seeds were collected from a number of sites and subjected to 6 temperature treatments and fire cues (in the fire germination data), or two a range of dehydration levels (in the water germination data).

Data are from Hewitt et al. 2015 (Austral Ecology 40(6):661-671), shared by Charles Morris, and simplified for the purpose of this book.

\section*{Variables:}
'germination_fire.csv' :
- species - One of four Melaleuca species
- temp - Temperature treatment (C)
- fire.cues - Fire cue treatment (yes or no)
- site - Coding for the site where the seed was collected
- cabinet - ID for the cabinet where seeds were treated
- germ - Number of germinated seeds
- n - Number of seeds tested (20 for all rows)
'germination_water.csv':
- species - One of four Melaleuca species
- site - Coding for the site where the seed was collected
- water . potential - Water potential of the seed (Mpa) after incubation (low values is drier)
- germ - Number of germinated seeds
- n - Number of seeds tested (25 for all rows)

\section*{A. 23 Leaf gas exchange at the EucFACE}

File: ‘eucface_gasexchange.csv’
Measurements of leaf net photosynthesis at the EucFACE experiment, on leaves of different trees growing in ambient and elevated \(\mathrm{CO}_{2}\) concentrations. Measurements were repeated four times during 2013 (labelled as Date=A,B,C,D).

Data are from Gimeno et al. 2015 (Functional Ecology, doi: 10.1111/1365-2435.12532), and simplified for the purpose of this book.

\section*{Variables:}
- Date - One of four campaigns (A,B,C,D)
- C02 - CO2 treatment (either ambient - Amb, or elevated - Ele)
- Ring- One of six 'rings' (plots) at the EucFACE
- Tree - Unique identifier for the tree number
- Photo - Net leaf photosynthesis (\(\mu \mathrm{mol} \mathrm{m}^{-2} \mathrm{~s}^{-1}\))
- Trmmol - Leaf transpiration rate (\(\mathrm{mmol} \mathrm{m}{ }^{-2} \mathrm{~s}^{-1}\))
- VpdL - Vapour pressure deficit (kPa)

\section*{A. 24 Howell height, age and weight data}

File: 'howell.csv'
Downloaded from https://tspace.library.utoronto.ca/handle/1807/17996, subsetted for non-missing data and one outlier removed. These data were also used by McElreath (2016, "Statistical Rethinking", CRC Press). Data include measurements of height, age and weight on Khosan people.

\section*{Variables:}
- sex - male or female
- age - Age (years)
- weight - Body weight)kg)
- height - Total height (cm)

\section*{A. 25 Wild mouse metabolism}

File: 'wildmousemetabolism.csv'
Data courtesy of Chris Turbill.
rmr resting metabolic rate minimum of a running average over 12 min (\(k\) C hour-1) each run is six days bm body mass in grams food

\section*{Variables:}
- id - Individual number.
- run - The experiment was repeated three times (run \(=1,2,3\))
- day - Day of experiment (1-6)
- temp - Temperature (deg C)
- food - Whether food was provided ('Yes') or not ('No')
- bm - Body mass (g)
- wheel - Whether the mouse could use an exercise wheel ('Yes') or not ('No')
- rmr - Resting metabolic rate (minimum rate of a running average over 12min) (kC hour-1)
- sex - Male or Female

\section*{A. 26 Plant drought tolerance}

File: 'Choat_precipP50.csv'
Data are from Choat et al. 2012 (Nature 491: 752âĂŞ755), and were simplified for the purpose of this book.

Data include a measure of plant drought tolerance (P50, more negative values indicate plant stems can tolerate lower water contents), and mean annual precipitation of the location where the sample was taken. Data are for 115 individual species (species name not included).

\section*{Variables:}
- annualprecip - Mean annual precipitation (mm)
- P50 - Measure of plant drought tolerance (the water potential at which \(50 \%\) of plant hydraulic conductivity is lost) (MPa)

\section*{A. 27 Child anthropometry}

File: ‘anthropometry.csv'
Data were downloaded from http://mreed.umtri.umich.edu/mreed/downloads.html. Data include measurements of age, foot length, and height for 3898 children. These data are a small subset of many dozens of measurements on the same children, described in detail by Snyder (1977) (see above link for more information).

\section*{Variables:}
- age - Age (years, converted from months in original dataset)
- gender - Female or male
- foot_length - Total foot length (mm)
- height - Total height (cm)

\section*{A. 28 Alphabet}

File: 'alphabet.txt'
Lyrics for the song 'Alphabet Aerobics' by Blackalicious (3-2-1 Records, 1999). The rendition by Daniel Radcliffe is worth a watch (https://www.youtube. com/watch? \(\mathrm{v}=\mathrm{aKdV5FvXLuI)}\).

\section*{Technical information}

This book was compiled with the following \(R\) version and packages.
- R version 3.6.1 (2019-07-05), x86_64-apple-darwin15.6.0
- Locale: en_AU.UTF-8/en_AU.UTF-8/en_AU.UTF-8/C/en_AU.UTF-8/en_AU.UTF-8
- Running under: macOS Sierra 10.12.6
- Matrix products: default
- BLAS: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRblas.0.dylib
- LAPACK: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRlapack.dylib
- Base packages: base, datasets, graphics, grDevices, methods, stats, utils
- Other packages: car 3.0-3, carData 3.0-2, doBy 4.6-2, dplyr 0.8.3, effects 4.1-1, emmeans 1.4, epade 0.3.8, Formula 1.2-3, ggplot2 3.2.1, gplots 3.0.1.1, Hmisc 4.2-0, knitr 1.24, lattice 0.20-38, lubridate 1.7.4, magicaxis 2.0.10, MASS 7.3-51.4, moments 0.14, pastecs 1.3.21, plotrix 3.7-6, RColorBrewer 1.1-2, scales 1.0.0, sciplot 1.1-1, survival 2.44-1.1, visreg 2.5-1
- Loaded via a namespace (and not attached): abind 1.4-5, acepack 1.4.1, assertthat 0.2.1, backports 1.1.4, base64enc 0.1-3, bitops 1.0-6, boot 1.3-23, caTools 1.17.1.2, celestial 1.4.6, cellranger 1.1.0, checkmate 1.9.4, cluster 2.1.0, codetools 0.2-16, colorspace 1.4-1, compiler 3.6.1, crayon 1.3.4, curl 4.0, data.table 1.12.2, DBI 1.0.0, digest 0.6.20, estimability 1.3 , evaluate 0.14 , forcats 0.4.0, foreign 0.8-72, formatR 1.7, gdata 2.18.0, glue 1.3.1, grid 3.6.1, gridExtra 2.3, gtable 0.3.0, gtools 3.8.1, haven 2.1.1, highr o.8, hms 0.5.1, htmITable 1.13.1, htmltools o.3.6, htmlwidgets 1.3, KernSmooth 2.23-15, latticeExtra 0.6-28, lazyeval 0.2.2, Ime4 1.1-21, magrittr 1.5, mapproj 1.2.6, maps 3.3.0, Matrix 1.2-17, minqa 1.2.4, mitools 2.4, multcomp 1.4-10, multcompView 0.1-7, munsell 0.5.0, mvtnorm 1.0-11, NISTunits 1.0.1, nlme 3.1-141, nloptr 1.2.1, nnet 7.3-12, openxlsx 4.1.0.1, pillar 1.4.2, pkgconfig 2.0.2, plyr 1.8.4, pracma 2.2.5, purrr 0.3.2, R6 2.4.0, RANN 2.6.1, Rcpp 1.0.2, readxl 1.3.1, rio 0.5.16, rlang 0.4.0, rpart 4.1-15, rstudioapi 0.10 , sandwich \(2.5-1\), sm 2.2-5.6, splines 3.6.1, stringi 1.4.3, stringr 1.4.0, survey 3.36, tcltk 3.6.1, TH.data \(1.0-10\), tibble 2.1.3, tidyselect 0.2 .5, tools 3.6 .1 , vctrs 0.2 .0 , withr 2.1.2, xfun 0.9 , xtable 1.8-4, zeallot 0.1.0, zip 2.0.3, zoo 1.8-6

Code is available on www.bitbucket.org/remkoduursma/hiermanual.

\section*{Index}

List of nearly all functions used in this book. Packages are in bold. Bold page numbers refer to the key description of the function.
!, 46, 53, 62
:, 23, 30
\(==, 46,53,62\)
?, 30
??, 28, 30
\$, 43, 53
\%in\%, 46, 53
\&, 46, 53, 63
|, 46, 53
|, 63
>, 46, 53
\(>, 62\)
\(<, 46,53\)
<, 63
abline, 108, 124, 142, 145, 147
ablineclip, 124
abs, 216
aggregate, 208
AIC, 185, 212
all, 79, 86
allEffects, 192, 207, 207, 209, 212
Anova, 182, 190, 191, 212
anova, 210, 211
any, 53, 56, 73, 79, 222, 231
aov, 177
apply, 233
as.character, 79
as.Date, 71, 72, 79
as.factor, 59, 67, 79
as.logical, 79
as.numeric, 64, 79
ave, 161
bargraph.CI, 116, 124
barplot, 90, 94, 99, 124, 155
barplot2, 90, 124
bind_rows, 169
boxplot, 95, 124, 175
brewer.pal, 100
broom, 225
bwplot, 119, 124
C, 23, 30, 35
car, 142, 143, 147, 182, 185, 210, 212
cat, 79
cbind, 30, 170
ceiling, 11, 30
cld, 184, 211
colMeans, 22, 30, 37, 233
colorRampPalette, 100, 125, 126
colSums, 22, 30
complete.cases, 65, 80, 204
contents, 153, 174
cor, 30, 36
cumsum, 18, 30
curve, 93, 125, 131, 147, 227
cut, 60, 80, 101, 125, 129
data.frame, 39, 41, 53, 175
day, 80
days, 80
demo, 99, 125
describe, 80, 87, 153, 174
dev.copyzeps, 122, 125
dev.copy2pdf, 122, 125, 237
dev.off, 107, 125, 226
diag, 22, 30
diff, 18, 30, 80, 86, 86
difftime, 71, 80
dir, 25, 30, 31, 225
dmy, 80, 82, 85
dnorm, 92, 125, 233
do.call, 230
doBy, 157
dplyr, 169
drop1, 212
droplevels, 61, 80
duplicated, 53, 56, 222
dust, 172, 172
effects, 192, 201, 207, 212
emmeans, 179, 211
emmeans, 179, 180, 183, 201, 211
epade, 129
example, 30, 37
expression, 106, 109, 114, 125
factor, 60, 60, 80, 204, 208
fitdistr, 227
floor, 11, 30, 231
for, 225
foreign, 41
ftable, 159
function, 215, 230
getwd, 226
ggplot2, 116, 121
ggplot2., 116
glance, 225
glm, 205, 207, 209, 211, 214
gplots, 90, 114, 124
gray, 125
grep, 68, 68, 69, 81
grepl, 68, 69, 81
grey, 100, 125, 126
gsub, 81, 88
head, 18, 30, 40, 42, 53, 56, 231
heat.colors, 100, 126
hist, 37, 92, 112, 126, 233
hist(myvector), 37
Hmisc, 80, 87, 153, 174
hour, 75, 81
hours, 81
ifelse, 60, 81, 86, 208
install.packages, 26
installr, 27
interaction.plot, 182
intersect, 30, 37
is.character, 77, 81
is.Date, 77, 81
is.factor, 77, 81
is.logical, 77, 81
is.na, 64, 81, 87, 231
is.numeric, 77,81
ISOdate, 72, 82
ISOdatetime, 82
kable, 171, 171-173
knitr, 3, 13, 14, 171, 171
kurtosis, 133, 147
lapply, 222, 224, 227, 230
lattice, 119, 121, 124
layout, 110, 126
left_join(mydata1, mydata2), 170
legend, 98, 114, 126
length, 18, 30, 131, 147, 159
LETTERS, 31, 36, 53, 56
letters, 31, 36, 53, 56
levels, 60, 60, 62, 82, 87
levels(), 62
library(), 26
list, 217, 230
list.files, 25, 30, 31
Im, 141, 142, 147, 177, 191, 211, 213, 220
log, 147
log10, 145, 147
Is, 24, 31, 54, 58
lubridate, 71, 72, 73, 77, 80-85, 239
magaxis, 126
magicaxis, 117, 126
MASS, 227
match, 67, 82
max, 18, 31, 33, 73, 82, 161
mdy, 72, 80, 82, 85
mean, 18, 31, 131, 147
median, 18, 31
merge, 164, 168
message, 217, 230
min, 18, 31, 33, 73, 82
minute, 75,82
minutes, 82
moments, 133, 147
month, 75, 82
months, 82
mtext, 109, 114, 126
multcomp, 184, 211
names, 44, 54, 67, 82, 208
nchar, 20, 31, 66, 82, 87
ncol, 44, 54
nlevels, 83, 87
now, 74, 83
nrow, 44, 54, 231
order, 18, 31, 54, 57
p_load, 27, 27
pacman, 27, 27
pairs, 184, 211
palette, 97-99, 126
pander, 172, 172, 173
pander, 172
pandoc.table, 173
par, 107, 111, 111, 112, 123, 125, 127
paste, 67, 83, 88, 239
pasteo, 239
pastecs, 133
pdf, 226
pie, 93, 127
pixiedust, 172, 172, 173
plot, 90, 102, 103, 111, 127
plotCl, 90, 127
plotrix, 90, 114, 124, 127
points, 108, 111, 127, 128, 232
poly, 202
power.t.test, 140, 147
predict, 198, 201
print, 231
prop.test, 136, 147
pwpp, 211
qnorm, 150
qqnorm, 233
qqPlot, 143, 147, 185
qqPlot(pupweight, distribution=norm), 151
quantile, 133, 147, 150
R markdown
code chunks in, 15
formatting body text, 16 introduction to, 13
kable function, 171
loading packages in, 26
pander package, 172
pixiedust package, 172
tables in, 170
R scripts
introduction to, 11
rainbow, 100, 126, 127
rbind, 31, 168, 169
RColorBrewer, 100
read.csv, 39, 39, 40, 54, 68, 76, 83
read.table, 41, 54, 68, 76, 83, 181
readline, 231
readLines, 83, 87
readxl, 40
reorder, 162, 175
rep, 23, 23, 31, 36
replicate, 233
residualPlot, 185
residuals, 145, 147
return, 230
rev, 18, 31, 162
rexp, 24, 31
right_join(mydata1, mydataz), 170
rm, 24, 31, 54, 58
rnorm, 24, 31, 92, 150, 216
round, 11, 18, 32, 34
rowMeans, 22, 32, 37
rownames, 40, 83
rowSums, 22, 32
runif, 23, 24, 32, 34, 216, 233
sample, 24, 32, 34, 36, 83, 88
sapply, 222, 223, 227, 230
save, 29, 32
save.image, 28, 32
scales, 102
sciplot, 116, 124
sd, 18, 32, 37, 132, 147, 216
seq, 23, 32, 75, 83, 150
setdiff, 32, 37
setwd, 25, 32
showtext, 107, 108, 108
skewness, 133, 147
sort, 18, 20, 32, 36, 84, 88
source, 237
split, 221, 230
str, 42, 54, 67, 76, 84, 87, 152, 153, 174, 220
strsplit, 84, 88, 223, 230
subset, 47, 49, 49-51, 54, 63, 65, 84, 86
substr, 66, 84, 231
summary, 43, 54, 84, 87, 133, 142, 148, 152, 153, 174, 178, 182, 211
summaryBy, 157, 157, 159, 161
symbols, 116, 127
t, 22, 32
t.test, 135, 135-139, 148
table, 60, 84, 87, 88, 159, 232 tail, 40, 231
tapply, 90, 127, 134, 148, 155,

155, 159, 161
text, 107, 109, 127
today, 72, 84
trellis, 127
trellis.par.get, 121, 127 trellis.par.set, 121, 127
union, 32, 37, 169 unique, 18, 32, 84, 87 unlist, 218, 230
updateR, 27
var, 18, 32, 131, 148
visreg, 212
visreg, 193, 212
weekdays, 84
which, 64, 66, 84, 231
which.max, 18, 33, 54, 57
which.min, 18, 33,54, 57
wilcox.test, 136, 139, 148
windowsFonts, 107, 107, 127
with, 43, 54
write.csv, 52, 54, 55, 57, 170
write.table, 52, 55, 170
xtabs, 159, 174, 181
xyplot, 119, 127
yday, 75, 84
year, 84
years, 84
ymd, 72, 80, 82, 85```

[^0]: ${ }^{1}$ Gandrud, C. Reproducible Research with R and R Studio. CRC Press, 2015. 2nd Edition.
 ${ }^{2}$ Anscombe 1973 "Graphs in Statistical analysis", The American Statistician 27:17-21

