## Solutions to Proportional Reasoning Problems

1. Using method 1: solving a proportion equation

Step 1: $55.85 \mathrm{~g} / 1 \mathrm{~mol}=136.9 \mathrm{~g} /$ ? mol. Let $x$ be the number of moles that we are looking for. Hence we need to solve for $x$ :

$$
\frac{55.85 \mathrm{~g}}{1 \mathrm{~mol}}=\frac{136.9 \mathrm{~g}}{x}
$$

Step 2: Now we can solve for $x$ by cross multiplying:

$$
55.85 \mathrm{~g} \times x=136.9 \mathrm{~g} \times 1 \mathrm{~mol}
$$

Step 3: Solve the equation for $x$, where $x$ is the number of moles of atoms we are looking for:

$$
\begin{aligned}
x & =\frac{136.9 \mathrm{~g} \times 1 \mathrm{~mol}}{55.85 \mathrm{~g}} \\
& =2.451 \mathrm{~mol}
\end{aligned}
$$

Therefore, about 2.452 moles of atoms are contained in 136.9 g of Fe
2. Using method 2: Solving how many grams of Na and Cl are in each gram of pure NaCl
Step 1: 100 grams of NaCl contains 39.4 grams of Na 100 grams of NaCl contains 60.6 grams of Cl

Step 2:To determine how many grams of Na and how many grams of Cl are present in 1 gram of NaCl we divide by 100 which gives:

1 gram of NaCl contains 0.394 grams of Na 1 gram of NaCl contains 0.606 grams of Cl

Step 3: To now determine how many grams of NA and Cl are present in 250 g of pure NaCl we multiply by 250 . That is:

250 grams of NaCl contains $250 \times 0.394$ grams of Na
250 grams of NaCl contains $250 \times 0.606$ grams of Cl

Therefore, there are 98.5 grams of Na and 151.5 grams of Cl in 250 grams of pure NaCl .
3. Using method 1: solving a proportion equation

Step 1: $2050 \mathrm{~km} / 55 \mathrm{~L}=x / 22 \mathrm{~L}$ where $x$ is the number of kilometres.
We now need to solve for $x$

$$
\frac{2050 \mathrm{~km}}{55 \mathrm{~L}}=\frac{x}{22 L}
$$

Step 2: Now, we can solve for $x$ by cross multiplying:

$$
2050 \mathrm{~km} \times 22 L=x \times 55 L
$$

Step 3: Solve the equation for $x$, where $x$ is the number of moles of atoms we are looking for:

$$
\begin{aligned}
x & =\frac{2050 \mathrm{~km} \times 22 L}{55 L} \\
& =820 \mathrm{~km}
\end{aligned}
$$

Therefore, a car can travel 820 km on 22 L

