Solutions to Manipulating Relationships Problems

1. We are given the formula $d=\frac{m}{v}$ and the known variable are the density $(d), 0.785$ and the mass (m) which has a value of 10 .
As we are asked to find the volume (v) of the 10 g sample of isopropyl alcohol we can rearrange the relationship $d=\frac{m}{v}$ to isolate v.

$$
d=\frac{m}{v}
$$

Multiply both sides by v gives

$$
d v=m
$$

Now, divide both sides by d to isolate v

$$
\begin{aligned}
\frac{d v}{d} & =\frac{m}{d} \\
\frac{d v}{d} & =\frac{m}{d} \\
v & =\frac{m}{d}
\end{aligned}
$$

On substituting the values $m=10$ and $d=0.785$ into the relationship $v=\frac{m}{d}$

$$
\begin{aligned}
v & =\frac{10}{0.785} \\
& =12.7388535
\end{aligned}
$$

That is, the volume of the 10 g sample of isopropyl alcohol is approximately 12.74 mL .
2. Rearrange the relationship $t_{C}=\frac{5}{9}\left(t_{F}-32\right)$ to isolate t_{F} on one side:

$$
t_{C}=\frac{5}{9}\left(t_{F}-32\right)
$$

Multiply both sides by 9 :

$$
\begin{aligned}
9 \times t_{C} & =9 \times \frac{5}{9}\left(t_{F}-32\right) \\
9 t_{C} & =5\left(t_{F}-32\right)
\end{aligned}
$$

Expanding the right hand side gives:

$$
9 t_{C}=5 t_{F}-160
$$

Now add 160 to both sides:

$$
\begin{aligned}
& 9 t_{C}+160=5 t_{F}-160+160 \\
& 9 t_{C}+160=5 t_{F}
\end{aligned}
$$

And lastly, divide both sides by 5 to isolate t_{F}, that is:

$$
\frac{9 t_{C}+160}{5}=t_{F}
$$

Now we can substitute $t_{C}=30$ into the relation above, giving:

$$
\begin{array}{r}
\frac{9 \times 30+160}{5}=t_{F} \\
86=t_{F}
\end{array}
$$

That is, 30 degrees Celsius corresponds to 86 degrees Fahrenheit.
3. In this question, we are asked to find the value for energy. From the relationship specific heat $=\frac{E}{m T}$ we need to isolate the variable E.
We can do this by multiplying both sides by $m T$:

$$
\begin{aligned}
& m T \times \text { specific heat }=\frac{E}{m T} \times m T \\
& m T \times \text { specific heat }=\frac{E}{m T} \times m T \\
& m T \times \text { specific heat }=E
\end{aligned}
$$

Now we can substitute the values given for specific heat, $4.184 \mathrm{~J} / g^{\circ} \mathrm{C}$, mass $(m), 250 \mathrm{~g}$ and temperature change $(T), 60^{\circ}$ (as the change in temperature is given by $80^{\circ}-20^{\circ}$).
Therefore,

$$
\begin{aligned}
E & =m T \times \text { specific heat } \\
& =250 \times 60 \times 4.184 \\
& =62,760 .
\end{aligned}
$$

That is, the heat energy required is 62,760 Joules.

